The interplay of structural features and observed dissimilarities among centrality indices

David Schoch, Termeh Shafie



An abundance of centrality indices has been proposed which capture the importance of nodes in a network based on different structural features. While there remains a persistent belief that similarities in outcomes of indices is contingent on their technical definitions, a growing body of research shows that structural features affect observed similarities more than technicalities. We conduct a series of experiments on artificial networks to trace the influence of specific structural features on the similarity of indices which confirm previous results in the literature. Our analysis on 1163 real-world networks, however, shows that little of the observations on synthetic networks convincingly carry over to empirical settings. Our findings suggest that although it seems clear that (dis)similarities among centralities depend on structural properties of the network, using correlation type analyses do not seem to be a promising approach to uncover such connections.

Social Networks