Analyzing Social Structure using Multigraph Representations

Termeh Shafie
Department of Computational Social Science
GESIS - Leibniz Institute for the Social Sciences

the theoretical background

xked.com
\checkmark Shafie, T. (20I5).A multigraph approach to social network analysis. Journal of Social Structure, I6, I-2 I
\checkmark Shafie, T. (2016).Analyzing local and global properties of multigraphs. The Journal of Mathematical Sociology, 40(4), 239-264.
\checkmark Frank, O., Shafie, T., (2018). Random Multigraphs and Aggregated Triads with Fixed Degrees. Network Science, 6(2), 232-250.
\checkmark Shafie,T., Schoch, D. (202I) Multiplexity analysis of networks using multigraph representations. Statistical Methods \& Applications 30, I425-I444.
\checkmark Shafie, T. (2022). Goodness of fit tests for random multigraph models, Journal of Applied Statistics. I-26

R package: https://cran.r-project.org/package=multigraphr

multivariate networks

multivariate networks comprise
[] vertex set with at least one type of edge between pairs of nodes
If numerical and/or qualitative attributes on the vertices and edges

multivariate network data represented as multigraphs:

"graphs where multiple edges and self-edges are permitted"

(I) can appear directly in applications (although scarce)

IV can be constructed by different kinds of aggregations in graphs
\checkmark node aggregation based on node attributes
\checkmark tie aggregation based on tie attributes

aggregated multigraphs

example:

informative statistics in multigraphs

statistics for analyzing local and global social structural features

I number of loops and non-loops: tendency for within and between vertex category edges \longrightarrow homophily/heterophily
\square tendency for isolated vertices \longrightarrow network diffusion
\square simple occupancy of edges \longrightarrow simple/complex network*
\square single ties within vertex category \longrightarrow isolation
\square tendency for strengthening ties and if overlapping for multiple edge types \longrightarrow multiplexity

> how do we quantify these statistics?

[^0]
multigraph representation of network data

(V) multigraph represented by their edge multiplicity sequence

$$
\mathbf{M}=\left(M_{i j}:(i, j) \in R\right)
$$

where R is the canonical site space for undirected edges $R=\{(i, j): 1 \leq i \leq j \leq n\}$

$$
(1,1)<(1,2)<\ldots<(1, n)<(2,2)<(2,3)<\ldots<(n, n)
$$

I the number of vertex pair sites is given by

$$
r=\binom{n+1}{2}
$$

- edge multiplicities as entries in a matrix

$$
\mathbf{M}=\left[\begin{array}{cccc}
M_{11} & M_{12} & \ldots & M_{1 n} \\
0 & M_{22} & \ldots & M_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & M_{n n}
\end{array}\right] \quad \mathbf{M}+\mathbf{M}^{\prime}=\left[\begin{array}{cccc}
2 M_{11} & M_{12} & \ldots & M_{1 n} \\
M_{12} & 2 M_{22} & \ldots & M_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
M_{1 n} & M_{2 n} & \ldots & 2 M_{n n}
\end{array}\right]
$$

multigraph representation of network data

example:

IT the number of vertex pair sites

$$
r=\binom{n+1}{2}=\frac{5 \times 4}{2}=10
$$

\square edge multiplicity sequence

$$
\left.\begin{array}{rl}
\mathbf{M} & =\left(M_{11}, M_{12}, M_{13}, M_{14}, M_{22}, M_{23}, M_{24}, M_{33}, M_{34}, M_{44}\right) \\
& =\left(\begin{array}{lllllll}
1, & 3, & 1, & 1, & 2, & 5, & 2,
\end{array}\right) \quad 2, \quad 3
\end{array}\right)
$$

\square edge multiplicities as entries in a matrix

$$
\mathbf{M}=\left[\begin{array}{llll}
1 & 3 & 1 & 1 \\
0 & 2 & 5 & 2 \\
0 & 0 & 0 & 2 \\
0 & 0 & 0 & 3
\end{array}\right] \quad \mathbf{M}+\mathbf{M}^{\prime}=\left[\begin{array}{llll}
2 & 3 & 1 & 1 \\
3 & 4 & 5 & 2 \\
1 & 5 & 0 & 2 \\
1 & 2 & 2 & 6
\end{array}\right]
$$

statistics under random multigraph models

quantified defined using the distribution of edge multiplicities

\square number of loops M_{1} and number of non-loops M_{2}
I complexity sequence $\mathbf{R}=\left(R_{0}, R_{1}, \ldots, R_{k}\right)$ where

$$
R_{k}=\sum \sum_{i \leq j} I\left(M_{i j}=k\right) \quad \text { for } k=0,1, \ldots, m
$$

is the frequencies of edge multiplicities

```
\checkmark M1 and M}\mp@subsup{M}{2}{
\checkmark M2 and }\mp@subsup{R}{2}{
```

- tendency for within and between vertex category edges (homophily/heterophily)
$\checkmark R_{0}$ and R_{1}
- R_{0} : tendency for isolated vertices (network diffusion)
- R_{1} : simple occupancy of edges
$\checkmark M_{1}$ and R_{1}
- single ties within vertex category (isolation)
$\checkmark M_{2}$ and R_{2}
- simplicity statistics
- single ties within vertex category (isolation)
$\checkmark R_{0}+R_{1}$ compared to $R_{3}+\cdots+R_{k}$
- tendency for strengthening ties (multiplexity)
\checkmark interval estimates for R_{k}
- if overlapping for multiple edge types \Rightarrow multiplexity

random multigraph models

Independent Edge Assignments of Stubs edge assignment probabilities $\mathbf{Q}(\mathbf{d})$ where \mathbf{d} is observed degree sequence

Independent Stub Assignments degree sequence \sim multinomial $(2 m, \mathbf{p})$ where \mathbf{p} are stub assignment probabilities

$$
\mathbf{M} \sim \operatorname{IEA}(\mathrm{Q})
$$

Independent Edge Assignments edge sequence \sim multinomial $(2 m, \mathbf{Q})$
where \mathbf{Q} are edge assignment probabilities

random multigraph models

random stub matching (RSM)
] edges are assigned to sites given fixed degree sequence $\mathbf{d}=\left(d_{1}, \ldots, d_{n}\right)$
\square probability that an edge is assigned to site $(i, j) \in R$

$$
Q_{i j}= \begin{cases}\binom{d_{i}}{2} /\binom{2 m}{2} & \text { for } i=j \\ d_{i} d_{j} /\binom{2 m}{2} & \text { for } i<j\end{cases}
$$

independent edge assignments (IEA)
\square edges are independently assigned to vertex pairs in site space R
\square edge assignment probabilities $\mathbf{Q}=\left(Q_{i j}:(i, j) \in R\right)$
V \mathbf{M} is multinomial distributed with parameters m and \mathbf{Q}
I moments of statistics for analysing local and global structure are easily derived
I can be used as an approximation to the RSM model

random multigraph models

approximate IEA models

independent edge assignment of stubs (IEAS)
I edges assignment probabilities defined by observed degree sequence $\mathbf{Q}=\mathbf{Q}(\mathbf{d})$
independent stub assignment (ISA)
■ Bayesian model for stub frequencies
\square degree sequence $\mathbf{D} \sim$ multinomial $(2 m, \mathbf{p})$ where \mathbf{p} are stub assignment probabilities

statistics under random multigraph models

$$
\begin{array}{ll}
\checkmark M_{1} \text { and } M_{2} & \checkmark M_{2} \text { and } R_{2} \\
- \text { tendency for within and between vertex category edges } & \begin{array}{l}
- \text { simplicity statistics } \\
\text { (homophily/heterophily) }
\end{array} \\
& \text { single ties within vertex category (isolation) } \\
\checkmark R_{0} \text { and } R_{1} & \checkmark R_{0}+R_{1} \text { compared to } R_{3}+\cdots+R_{k} \\
-R_{0} \text { : tendency for isolated vertices (network diffusion) } & \begin{array}{l}
\text { - tendency for strengthening ties (multiplexity) }
\end{array} \\
-R_{1} \text { : simple occupancy of edges } \\
\checkmark M_{1} \text { and } R_{1} & \\
- \text { single ties within vertex category (isolation) } & \checkmark \text { interval estimates for } R_{k} \\
\text { - if overlapping for multiple edge types } \Rightarrow \text { multiplexity }
\end{array}
$$

moments of these statistics can be derived under IEA but not under RSM
\Longrightarrow to avoid computational difficulties we can to use the IEA approximations

> approx 95% intervals $\hat{E} \pm 2 \sqrt{\hat{V}}$

goodness of fit tests

gof measures between observed and expected edge multiplicity sequence

test statistics:

\square S of Pearson type
I] A of information divergence type

some results:

IV even for very small m, null distributions of test statistics under IEA model are well approximated by asymptotic distributions

『 the convergence of the cdf's of test statistics are rapid and depend on parameters in models

empirical examples

(leisure

multivariate social networks

the AUCS dataset: relations between faculty and staff members at a university a multivariate network with multiple types of ties and vertex attributes

■ five types of relations of the considered network dataset

- vertex attributes are research group (RG) and academic position

aggregation based on single or combined vertex attributes \Rightarrow three multigraphs

aggregated multigraphs

aggregated multigraphs: waffle matrices

aggregated multigraphs: waffle matrices

aggregated multigraphs: waffle matrices

$\checkmark M_{1}$ and M_{2}

tendency for within and between vertex category edges
(homophily/heterophily)
$\checkmark M_{2}$ and R_{2}

- simplicity statistics
- single ties within vertex category (isolation)
$\checkmark R_{0}$ and R_{1}
- R_{0} : tendency for isolated vertices (network diffusion)
R_{1} : simple occupancy of edges
$\checkmark M_{1}$ and $R_{1} \quad \checkmark$ interval estimates for R_{k}
- single ties within vertex category (isolation)
$\checkmark R_{0}+R_{1}$ compared to $R_{3}+\cdots+R_{k}$
- tendency for strengthening ties (multiplexity)
- if overlapping for multiple edge types \Rightarrow multiplexity

observed edge multiplicities

■ complexity sequence $\mathbf{R}=\left(R_{0}, R_{1}, \ldots, R_{k}\right)$ where

$$
R_{k}=\sum \sum_{i \leq j} I\left(M_{i j}=k\right) \quad \text { for } k=0,1, \ldots, m
$$

is the frequencies of edge multiplicities
$\checkmark R_{0}$ number of vertex pair sites with no edge occupancy $\checkmark R_{1}$ number of vertex pair sites with single edge occupancy $\checkmark R_{2}$ number of vertex pair sites with double edge occupancy !
compare to expected values from random multigraph models

expected edge multiplicities

expected values and variance of R_{k} are derived and estimated under models
(]) $\sim \operatorname{IEA}(\mathbf{Q})$
MLE of the edge assignment probabilities given by the empirical fraction of each edge type
■ ~IEAS(Q(d))
(IEA approximation of RSM)
edge assignment probabilities given by the observed degree sequence of each edge type

> approx 95% intervals illustraked $$
\hat{E} \pm 2 \sqrt{\hat{V}}
$$

multiplexity analysis

> approx 95% intervals illustrated $$
\hat{E} \pm 2 \sqrt{\hat{V}}
$$

multiplexity analysis

multigraph based on position
$\sim \operatorname{IEA}(\mathbf{Q})$

$\sim \operatorname{IEAS}(\mathbf{Q}(\mathbf{d}))$

* coauthor * facebook * leisure * lunch * work

multiplexity analysis

multigraph based on research group
$\sim \operatorname{IEA}(\mathbf{Q})$

$\sim \operatorname{IEAS}(\mathbf{Q}(\mathbf{d}))$

* coauthor * facebook * leisure * lunch * work

multiplexity analysis

multigraph based on position and research group
$\sim \operatorname{IEA}(\mathbf{Q})$
$\sim \operatorname{IEAS}(\mathbf{Q}(d))$

* coauthor * facebook * leisure * lunch * work

multiplexity analysis

■ both models provide good fits for multigraphs based on research groups

- intervals overlapping implies
\checkmark indicating that tie occurrences are not significantly different \checkmark tie occurrences are not independent implying
\checkmark some form of edge dependency is needed in the model specification

analysing ego networks

Krackhardt's High-tech Managers Networks (1987)
cognitive social structure data from 21 management personnel in a high-tech firm

relations:	actor attributes:
- undirected friendship	- department
- directed advice	- level

(also includes the relations each ego perceived among all other managers)

analysing ego networks

Krackhardt's High-tech Managers Networks (1987)
cognitive social structure data from 21 management personnel in a high-tech firm

relations:	actor attributes:
- undirected friendship	- department
- directed advice	- level

(also includes the relations each ego perceived among all other managers)

analysing ego networks

Krackhardt's High-tech Managers Networks (1987)

cognitive social structure data from 21 management personnel in a high-tech firm

relations:	actor attributes:
- undirected friendship	- department
- directed advice	- level
	- age
	- tenure

(also includes the relations each ego perceived among all other managers)

V/ age and tenure binarized to indicate low/high (0/I)
IJ each node thus has 4 possible cross-classified attribute outcomes: $(0,0),(0, I),(1,0),(1, I)$
E/ multigraphs aggregated based on these four possible outcomes represented as nodes

aggregated multigraphs

ego I's original network and aggregated multigraph

aggregated multigraphs

example: number of loops

~IEAS model
number of loops

example: goodness of fit

~IEAS model
number of loops

example: number of non-loops

example: goodness of fit

~IEAS model
number of non-loops

character networks

the under-/misrepresentation of female characters in movies
\square male vs. female frequency of appearances
\square gender role and content stereotyping
[] structure and dynamics of narrative texts

Alison Bechdel's
"Dykes to Watch Out For" (1985)
data (~ 10000 movies):
I character networks
(e.g. Cornell Movie-Dialogues Corpus)
\checkmark type, frequency and direction of interactions
\checkmark topic of dialogues
\checkmark number of lines

IV meta data
(from e.g. IMDb.com, bechdeltest.com)
\checkmark gender of writer(s), director(s), lead actor(s)
\checkmark year
\checkmark rating
\checkmark country of production
\checkmark box office revenue

character networks

the under-/misrepresentation of female characters in movies
■ male vs. female frequency of appearances
\square gender role and content stereotyping IV structure and dynamics of narrative texts
multigraph aggregations based on
IG gender (female/male)
V number of lines (low/high)
\square topic (pass or fail bechdel test)

models used to study e.g. homophily/heterophily

final words on presented framework

I let research question and social theories guide data transformations
\square attention to density of various edges and vertex variable distributions
[only applicable to undirected networks
Visual inspections of waffle matrices are only feasible for small multigraphs
I direction of associations between different edge types not revealed

R package: https://cran.r-project.org/package=multigraphr

```
install.packages("multigraphr")
# development version
devtools::install_github("termehs/multigraphr")
```


[^0]: * "if a graph contains loops and/or any pairs of nodes is adjacent via more than one line a graph is complex"[Wasserman and Faust, 1994]

