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multivariate networks

multivariate networks comprise
[ vertex set with at least one type of edge between pairs of nodes
M numerical and/or qualitative attributes on the vertices and edges

> skructure |

| composition |

multivariate network data represented as multigraphs:

} “graphs where multiple edges and self-edges are permitted” '

[ can appear directly in applications (although scarce)
M can be constructed by different kinds of aggregations in graphs

Y node aggregation based on node attributes
Y tie aggregation based on tie attributes



aggregated multigraphs
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informative statistics in multigraphs

statistics for analyzing local and global social structural features

M number of loops and non-loops: tendency for within and between vertex category edges
== homophily/heterophily

M tendency for isolated vertices == network diffusion
M simple occupancy of edges == simple/complex network*

M single ties within vertex category == isolation

M tendency for strengthening ties and if overlapping for multiple edge types ==% multiplexity
how do we quantify these statistics?

* “if a graph contains loops and/or any pairs of nodes is adjacent via more than one line a graph is complex” [Wasserman and Faust, 1994]



multigraph representation of network data

M multigraph represented by their edge multiplicity sequence
M=WM;: (@) €R)

where R is the canonical site space for undirected edges R = {(7,j) : 1 <i < j<n}
(I,LH)<(2)<...<(Un)<22)<23)<...<(n,n)
[ the number of vertex pair sites is given by
n+1
=
2

M edge multiplicities as entries in a matrix

Mll M12 e o o Mln 2M11 M12 e o o Mln
M = O ]\4.22 y MZH M+M = ]\4.12 2]\.422 y M2n
0 0 .. M. M, M, .. 2M,



multigraph representation of network data

example:
M the number of vertex pair sites ()

+ 1 5 X4
r= ("7 ) = =10
e o)
) _— 4 Q
M edge multiplicity sequence @ N /
M = (M1, M5, M3, M4, Myy, M3, My, M3, M3y, Myy) \

= (L, 3 I, L, 2, 5 2,0, 2, 3)

M edge multiplicities as entries in a matrix

1 311 2 31 1
Mo 0252 Mamo |3 452
000 2 1 50 2
00 0 3 1 226



statistics under random multigraph models

quantified defined using the distribution of edge multiplicities

M number of loops M, and number of non-loops M,

M complexity sequence R = (R, R, ...,

R;) where

R, = Z ZI(MU —k) fork=0,1,....m

i<j
is the frequenC|es of edge multlpI|C|t|es

v M1 and M2

- tendency for within and between vertex category edges
(homophily/heterophily)

v Ryand R,

- Ry: tendency for isolated vertices (network diffusion)
- R;:simple occupancy of edges

v M;and R,

smgle ties W|th|n vertex category (|solat|on)

v 2 an2

- simplicity statistics
- single ties within vertex category (isolation)

v Ry+ R compared to R; + --- + R,
- tendency for strengthening ties (multiplexity)

v interval estimates for R,

- if overlapplng for multiple edge types = multlpIeX|ty



random multigraph els
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M ~ RSM(d)

Random Stub Matching

N\ given observed degree sequence d /
\\\;\\

/

\
\

M ~ IEAS(Q(d)) M ~ ISA(Q(p))
Independent Edge Assignments of Stubs Independent Stub Assignments
edge assignment probabilities Q(d) degree sequence ~ multinomial(2m, p)
where d is observed degree sequence where p are stub assignment probabilities
/// M ~ IEA(Q)
//’/ Independent Edge Assignments |

\ edge sequence ~ multinomial(2m, Q)

\ n [N ] n /’/
here (Q are edge assignment probabilities




random multigraph models

random stub matching (RSM)

M edges are assigned to sites given fixed degree sequenced = (d,, ...,d,)
™ probability that an edge is assigned to site (i,j) € R

d; 2m o
fori =

)/ (7)
2m o
did; 5 fori <

M edges are independently assigned to vertex pairs in site space R
[ edge assignment probabilities Q = (Ql-j : (1,]) € R)
™ M is multinomial distributed with parameters m and Q

M moments of statistics for analysing local and global structure are easily derived
M can be used as an approximation to the RSM model

Qij —

independent edge assighments (IEA)



random multigraph models

M ~ RSM(d)

Random Stub Matching

given observed degree sequence d

/fﬁﬁ‘:‘

- — ﬁ B == ~ "/ |
P EEECT] N M@)o
Independent Edge Assignments of Stubs /‘f’ Independent Stub Assignments
\ edge assignment probabilities Q(d) : |  degree sequence ~ multinomial(2m, p)
\\\\ where d is observed degree sequence \\\ where p are stub assignment probabilities /
VW N

M ~ IEA(Q)

Independent Edge Assignments

edge sequence ~ multinomial(2m, Q)

where () are edge assignment probabilities



approximate IEA models

M ~ RSM(d)

Random Stub Matching

given observed degree sequence d
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.\ edge assignment probabilities Q(d) f 3 degree sequence ~ multinomial(2m, p)
where d is observed degree sequence \ \ Where p are stub assignment probabilities 4
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M ~ [EA(Q)

Independent Edge Assignments
edge sequence ~ multinomial(2m, Q)

where QQ are edge assignment probabilities

independent edge assighment of stubs (IEAS)

M edges assighment probabilities defined by observed degree sequence Q = Q(d)

independent stub assighment (ISA)
[ Bayesian model for stub frequencies

™ degree sequence D ~ multinomial(2m, p) where p are stub assignment probabilities



statistics under ra.ndom multlgra.ph models

v M andM,

- tendency for within and between vertex category edges
(homophily/heterophily)

v Ryand R,

- Ry: tendency for isolated vertices (network diffusion)
- R:simple occupancy of edges

v M, and R,

smgle ties W|th|n vertex category (|solat|on)

4 M2 and R2

- simplicity statistics
- single ties within vertex category (isolation)

v Ry+ R compared to R; + --- + R,

- tendency for strengthening ties (multiplexity)

v interval estimates for R,

- if overlapplng for multiple edge types = multlpIeX|ty

moments of these statistics can be derived under IEA but not under RSM

—> to avoid computational difficulties we can to use the IEA approximations
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goodness of fit tests
gof measures between observed and expected edge multiplicity sequence

dy=d= (6, 6,86, 2)

test statistics: y ~

[ S of Pearson type

™ A of information divergence type

some results: o 0
4 even for very small m, null distributions of test statistics under 39(512222)

IEA model are well approximated by asymptotic distributions

1.00

M the convergence of the cdf’s of test statistics are rapid
and depend on parameters in models

0.50

0.25

0.00



empirical examples

coauthor facebook leisure lunch work
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multivariate social networks

the AUCS dataset: relations between faculty and staff members at a university
a multivariate network with multiple types of ties and vertex attributes

[ five types of relations of the considered network dataset

[ vertex attributes are research group (RG) and academic position
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aggregation based on single or combined vertex attributes = three multigraphs



aggregated multigraphs
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agsregated multlgraphs waffle matrices
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aggregated multigraphs: waffle matrices
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waffle matrices

aggregated multigraphs
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+ *e +Rk

v Ry + R; compared to R;

- tendency for strengthening ties (multiplexity)

v interval estimates for R,

- if overlapping for multiple edge types = multiplexity



observed edge multiplicities
M complexity sequence R = (R, R,, ..., R,) where
Re=) D) IM;=k fork=01,..m

i<j
is the frequencies of edge multiplicities

v Ry number of vertex pair sites with no edge occupancy
v R; number of vertex pair sites with single edge occupancy

v R, number of vertex pair sites with double edge occupancy

compare to expected values from
random multigraph models
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expected edge multiplicities

expected values and variance of R, are derived and estimated under models

M ~ IEA(Q)

MLE of the edge assignment probabilities given by the empirical fraction of each edge type

M ~ IEAS(Q(d))
(IEA approximation of RSM)
edge assignment probabilities given by the observed degree sequence of each edge type
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multiplexity analysis

~ [EA(Q) ~ IEAS(Q(d)) ~ I[EA(Q)

~ |EAS(Q(d)) ~ IEA(Q)

~ [EAS(Q(d))

| approx 96% intervals tLllustrated




multiplexity analysis

multigraph based on position

~ IEA(Q) ~ IEAS(Q(d))
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multiplexity analysis

multigraph based on research group

~ IEA(Q) ~ [EAS(Q(d))
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multiplexity analysis
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multigraph based on position and research group
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multiplexity analysis
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[ both models provide good fits for multigraphs based on research groups

4 intervals overlapping implies

v indicating that tie occurrences are not significantly different
v tie occurrences are not independent implying
v some form of edge dependency is needed in the model specification
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analysing ego networks
Krackhardt's High-tech Managers Networks (1987)

cognitive social structure data from 2| management personnel in a high-tech firm

= — i e e ——

actor attributes:

relations:

| - undirected friendship | - department
| - directed advice | - level

@ it - age

§ i

' - tenure

(also includes the relations each ego perceived among all other managers)



analysing ego networks
Krackhardt's High-tech Managers Networks (1987)

cognitive social structure data from 2| management personnel in a high-tech firm

relations: actor attributes:
| - undirected friendship | - Iclepartment
| - directed advice | - level
i f - age
|
‘ | - tenure

(also includes the relations each ego perceived among all other managers)



analysing ego networks
Krackhardt's High-tech Managers Networks (1987)

cognitive social structure data from 2| management personnel in a high-tech firm

P — =t — — = e ey —

relations: actor attributes:
| - undirected friendship | - department
| - directed advice - level
- age

A

)
‘g
|

i

- tenure

B S —— e e g e e —— - — = T T

(also includes the relations each ego perceived among all other managers)

[A age and tenure binarized to indicate low/high (0/1)
[A each node thus has 4 possible cross-classified attribute outcomes: (0,0), (0, 1), (1,0), (I,1)

[A multigraphs aggregated based on these four possible outcomes represented as nodes



aggregated multigraphs

ego |’s original network and aggregated multigraph
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aggregated multigraphs
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example: number of loops

~|EAS model
number of loops
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example: goodness of fit

~|EAS model
number of loops
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example: number of non-loops

~|EAS model
number of non-loops

|l 2 3 4 5 6 7 8 9 10 11 12 13 14 I5 16 17 18 19 20 2]



example: goodness of fit

~|EAS model
number of non-loops
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character networks LA s
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the under-/misrepresentation of female characters in movies
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Alison Rechdel’s
“Dykes to Watch Qut For" (19%5)

data (~ 10 000 movies):

M character networks M meta data
(e.g. Cornell Movie-Dialogues Corpus) (from e.g. IMDb.com, bechdeltest.com)
Y type, frequency and direction of interactions v gender of writer(s), director(s), lead actor(s)
v topic of dialogues V' year
Y number of lines v rating

v country of production
v box office revenue



character networks -//.
the under-/misrepresentation of female characters in movies \
SaRN
M male vs. female frequency of appearances &’
M gender role and content stereotyping ’0.
[ structure and dynamics of narrative texts
/S eeeee \

multigraph aggregations based on

Wonder Woman (2017)

M gender (female/male)
M number of lines (low/high)

[ topic (pass or fail bechdel test)
models used to study
e.g. homophily/heterophily




final words on presented framework

M let research question and social theories guide data transformations

[ attention to density of various edges and vertex variable distributions

M only applicable to undirected networks

M visual inspections of waffle matrices are only feasible for small multigraphs

[ direction of associations between different edge types not revealed

R package: https://cran.r-project.org/package=multigraphr

install.packages("multigraphr")

devtools::install_github("termehs/multigraphr")

multigraphr

more guides available on my website, package vignette, and GitHub


https://cran.r-project.org/package=multigraphr

