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Discrete Distributions
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random variables
• Many random experiments have outcomes that are numerical 

For example: 
‣ number of people on a train 
‣ the time a customer will spend in line at the post office 
‣ the number of people voting for a candidate in a political election 

• In random experiments with outcomes not numerical, we map outcomes to numerical values  
For example: 
‣ in a coin toss experiment : H → 1 and T → 0 

• A random variable associates a number with each outcome of a random experiment 
• Parameters shape probability distributions of random variables

2

random variables
Given an experiment and the sample space , a random variable is a function mapping an outcome 

( ) into a real number, i.e. 

Ω
ω ∈ Ω

X : ω ∈ Ω → X(ω) ∈ (−∞, ∞)

• We use a capital letter   to denote a random variable 
• The values of a random variable will be denoted with a lower case letter   
• The range of a random variable is the set of values it can take 
• a function of a random variable is another mapping from the sample space to real numbers, so 

another random variable

X

x
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example 

Toss a coin 3 times: the sample space is   
Define the random variable: the number of heads 
What is the probability of each outcome of  

Ω : {H, T} × {H, T} × {H, T}
X =

X?

random variables

Outcome ( )         HHH    HTH    THH     HHT    HTT     THT   TTH     TTT 

                            3                       2                                1                    0 

ω

X(ω) ⏟ ⏟⏟⏟
P(X = 3) =

1
8

P(X = 2) =
3
8

P(X = 1) =
3
8

P(X = 0) =
1
8
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exercise 1 

Toss two dice, the sample space is given by  
Let the random variable  denote the sum of the two dice. 
What is the probability of each outcome 

Ω : {1,2,3,4,5,6} × {1,2,3,4,5,6}
X

X?

random variables

6

5

4

3

2

1

1 2 3 4 5 6
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discrete random variables: probability mass function
A random variable is discrete if its range is a countable (finite or infinite) set.

If  is a discrete random variable, the function given by   for each  within the 
range of  is called the probability distribution of , also called probability mass function (pmf)

X f(x) = P(X = x) x
X X

A function can serve as the probability distribution of a discrete random variable  if and only if its 
values, , satisfy the conditions: 

•  for each value within its domain 

•  where the sum if over all the  values within its domain.

X
f(x)

f(x) ≥ 0

∑
x

f(x) = 1 x
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example (cont’d…) 

Toss a coin 3 times: the sample space is   
Define the random variable: the number of heads 
What is the probability distribution of  

Ω : {H, T} × {H, T} × {H, T}
X =

X?

P(X = 3) =
1
8

P(X = 2) =
3
8

P(X = 1) =
3
8

P(X = 0) =
1
8

discrete random variables: probability mass function

Outcome ( )         HHH    HTH    THH     HHT    HTT     THT   TTH     TTT 

                            3                       2                                1                    0 

ω

X(ω) ⏟ ⏟⏟⏟
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example (cont’d…) 

Toss a coin 3 times: the sample space is   
Define the random variable: the number of heads 
What is the probability distribution of  

Ω : {H, T} × {H, T} × {H, T}
X =

X?

This function can be written as: f(x) =
4 − |3 − 2x |
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discrete random variables: probability mass function

0 1/8

1 3/8

2 3/8

3 1/8

x f(x) = P(X = x)
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The expected value, is the (probability) weighted average of the possible outcomes 

 

the center of gravity of the PMF 

E(X) = ∑
x

x ⋅ P(X = x)

expected value

The expected value rule:    

Let X be a random variable with PMF  and let  be a function of . Then, f(x) g(X) X
E[g(X)] = ∑

x

g(x) ⋅ f(x)
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The variance is given by  

 

the standard deviation  is usually easier to interpret 

• The variance is always nonnegative 
• We can find  by calculating the mean of  via the expected value rule 

• When computing the variance often we use a different (equivalent) form of the variance equation: 

V(X) = E[(X − E(X))2 = ∑
x

(x − E(X))2 ⋅ P(X = x) = E[X2] − E[X]2

V(X)

V(X) Z = (X − E[X])2

V(X) = E[X2] − E[X]2

variance

exercise 2 
Prove this
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expected value and variance
exercise 3 

Toss a coin 3 times. Define the random variable: the number of heads 
What is the expected value and variance of  

X =
X?

0 1/8

1 3/8

2 3/8

3 1/8

X f(x) = P(X = x)
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cumulative distribution function
If  is a discrete random variable, the function given by 

 

for   is the cumulative distribution of 

X

F(x) = P(X ≤ x) = ∑
t≤x

f(t)

−∞ < x < ∞ X

The values  of the cumulative distribution of a discrete random variable  satisfies the conditions: 
•  and  
•  If , then   for any real numbers  and 

F(x) X
f(−∞) = 0 f(∞) = 1
a < b F(a) ≤ F(b) a b
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example (cont’d…) 

Toss a coin 3 times: the sample space is   
Define the random variable: the number of heads 
What is the cdf of  

Ω : {H, T} × {H, T} × {H, T}
X =

X?

0 1/8 1/8

1 3/8 4/8

2 3/8 7/8

3 1/8 8/8

x f(x) = P(X = x) F(x) = P(X ≤ x)

cumulative distribution function
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summary: pmf and cdf
PMF of a discrete random variable  

gives the probability that  takes on a specific value 

 

 

 

X

X

p(xi) = P(X = xi) = P({s ∈ S ∣ X(s) = xi}

∑
xi

p(xi) = p(x1) + p(x2) + ⋯ = 1

p(xi) ≥ 0 ∀ xi

P(X ∈ A) = ∑
xi∈A

p(xi)

CDF of a discrete random variable  

gives the probability   takes on a value that is less 
than or equal to a specific value 

 

 

 

X

X

F(x) = P(X ≤ x), for any x ∈ ℝ

F(x) = P(X ≤ x) = P(X ∈ A) = ∑
xi≤x

p(xi)

p(xi) ≥ 0 ∀ xi

P(X ∈ A) = ∑
xi∈A

p(xi)
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Contingency table based on relative frequencies 
example 
Suppose we randomly select a family from a large population. Let: 

X = number of boys in the family 
Y = number of girls in the family 

where X + Y ≤ 4. 

joint, marginal and conditional distributions
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Contingency table based on relative frequencies 
example cont’d 
Joint and marginal probability distributions 

joint, marginal and conditional distributions

P(Y = y) = ∑
x

P(x, y)

P(X = x) = ∑
y

P(x, y)
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Contingency table based on relative frequencies 
example 
Conditional distributions. 

joint, marginal and conditional distributions

P(X = x ∣ Y = y) =
P(X = x ∩ Y = y)

P(Y = y)
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Contingency table based on relative frequencies 
example 
Conditional distributions. 

joint, marginal and conditional distributions

are X and Y independent?
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vampirical vs. empirical

https://www.science.org/doi/full/10.1126/sciadv.adu7402
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• A random variable for modeling binary events 
• Two possible outcomes:  
‣ Success: value 1 
‣ Failure: value 0 

• Single parameter , probability of a success 
• multiple Bernoulli r.v. can be combined to model more complex random variables 

• Shorthand notation:  

•

p

X ∼ Bern(p)
E(X) = p, V(X) = p(1 − p)

Bernoulli random variable

0

1

X P(X = x)
1 − p
p

P(X = x |p) = {p, if x = 1
1 − p, if x = 0
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https://www.science.org/doi/full/10.1126/sciadv.adu7402


• A r.v. modeling the number of (identical) Bernoulli trials needed to obtain the first success 
• Infinite outcomes   

• Single parameter , probability of a success for each trial 

• Shorthand notation:  

•

{1,2,3…, ∞}

p

X ∼ Geo(p)

E(X) =
1
p

, V(X) =
1 − p
(p2)

geometric random variable

1
2

3
4

X P(X = x)
p
p(1 − p)
p(1 − p)2

p(1 − p)3

p(1 − p)∞ ≈ 0
⋮ ⋮
∞

P(X = x |p) = p(1 − p)x−1

exercise 4
What is the probability of flipping a coin more than 4 times before 
getting a heads?

exercise 5
What is the expected number of rolls it will take to get a 7 when 
rolling two dice?
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• A r.v. modeling the number of successes in a fixed number of independent Bernoulli trials. 
• Discrete outcomes   

• Two parameter 
‣   : probability of a success for each trial 
‣  : number of trials 

• Shorthand notation:  
•

{0,1,2,3…, n}

p
n

X ∼ Binom(n, p)
E(X) = np, V(X) = np(1 − p)

binomial random variable

P(X = x |n, p) = (n
x) px(1 − p)n−x

0

1

2

n-1

n

X P(X = x)

(n
0) p0(1 − p)n

⋮ ⋮

(n
1) p1(1 − p)n−1

(n
2) p2(1 − p)n−2

( n
(n − 1)) pn−1(1 − p)1

(n
n) pn(1 − p)0
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binomial random variable: parameters shaping pmf
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binomial random variable
example (cont’d…) 

Toss a coin 3 times: the sample space is   
Define the random variable: the number of heads 
What is the probability distribution of  

  

Ω : {H, T} × {H, T} × {H, T}
X =

X?

X ∼ Bin(n = 3,p = 0.5)

⟹ P(X = x) = (n
x) px(1 − p)n−x = (n

x) 0.5x(0.5)3−x
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linking binomial and normal
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• The generalization of the binomial distribution with more than two possible outcomes 

•   independent trials 

• Each trial results in one of   outcomes that are mutually exclusive 

• For any trial, the probabilities of the  outcomes   are mutually exclusive and 
collectively exhaustive 

• Shorthand notation: where  

•

n

k

k p1, …, pk

(X1, X2, …, Xk) ∼ Multinomial(n, p1, p2, …, pk),
k

∑
i=1

pi = 1

E(Xi) = npi, V(Xi) = npi(1 − pi)

multinomial random variable

P((X1 = x1) ∩ ⋯ ∩ (Xk = xk)) =
n!

x1!⋯xk!

k

∏
i=1

p xi
i , when 

k

∑
i=1

xi = n,

0, otherwise .
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Poisson random variable
• A r.v. that expresses the probability of how many times an event occurs in a fixed period of 

time if these events 

‣ occur with known average rate of  
‣ and independently of each other 

• Discrete outcomes   

• Shorthand notation:  

•  

• If the data shows overdispersion (variance > mean) or underdispersion (variance < mean), 
other models like the Negative Binomial 

λ

{0,1,2,3…}

X ∼ Poisson(λ)

E(X) = V(X) = λ

P(X = x |λ) = e−λ λx

x!

0

1

2

X P(X = x)

e−λ

⋮ ⋮

e−λλ

e−λ λ2

2
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linking binomial and Poisson
What if we take the limit of  as  approaches infinity? 

 

Let’s replace  with    and   with   so that    

Write out the binomial coefficient and pmf becomes: 

 

→ There are exactly  factors in the first numerator!

P(X = x) n

P(X = x) = (n
x) p x(1 − p) n−x ⟶ lim

n→∞
P(X = x) =

e−λλ x

x!
=

λ x

x!
e−λ .

p
λ
n

q = 1 − p 1 −
λ
n

P(X = x) = (n
x) ( λ

n )
x

(1 −
λ
n )

n−x

.

P(X = x) =
n(n − 1)(n − 2)⋯(n − x + 1)

x!
⋅

λ x

n x (1 −
λ
n )

n−x

x
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linking binomial and Poisson
Use the power of multiplication and swap denominators between the first and second fraction: 

 

We split up the last factor using the rules of exponents:  which 

gives 

 

Now take the limit as  

Each factor   for fixed ,                          for fixed .

P(X = x) = [ n
n

⋅
n − 1

n
⋯

n − x + 1
n ] ⋅

λx

x! (1 −
λ
n )

n−x

.

(1 −
λ
n )

n−x

= (1 −
λ
n )

n

(1 −
λ
n )

−x

,

P(X = x) = [ n
n

⋅
n − 1

n
⋯

n − x + 1
n ] ⋅

λx

x! (1 −
λ
n )

n

(1 −
λ
n )

−x

.

n → ∞

n − k
n

→ 1 k (1 −
λ
n )

n

→ e−λ, (1 −
λ
n )

−x

→ 1 x
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linking binomial and Poisson
So the whole expression tends to 

 which is the Poisson pmf. 

We showed that as    and  , the Binomial pmf converges to the Poisson pmf.

P(X = x) →
λx

x!
e−λ

n → ∞ p = λ
n
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negative binomial random variable
• A generalization of the geometric distribution Pascal(1,p)=Geometric(p) 

• How many trials do we need to run until we observe the  success? 

• How many failures happen before the  success occurs? 

•  with possible  

• Two parameter 
‣  the number of successes we are waiting for 
‣  the probability that a single experiment gives a “success” 

• Shorthand notation:  

•

rth

rth

X = number of trials needed to get r successes x = r, r + 1,r + 2,…

X ∼ NegBin(r, p)

E(X) =
r
p

, V(X) =
r(1 − p)

p2
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negative binomial random variable
PMF (success-based form): 

 P(X = x ∣ r, p) = (x − 1
r − 1) p r(1 − p) x−r

• The last trial (the -th) must be a success, completing the -th success.

• The first  trials must contain:

‣  earlier successes

‣   failures


• These can be arranged in   different ways.


• Thus the probability is: 

x r
x − 1

r − 1
x − r

(x − 1
r − 1)

(number of valid sequences) × pr(1 − p)x−r .
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negative binomial random variable
PMF (failure-based form): 

 P(K = k ∣ r, p) = (k + r − 1
k ) p r(1 − p) k .

where:

•  is the number of failures,

• the last trial again must be a success,

• the first trials contain  failures and  successes.

k = x − r

k + r − 1 k r − 1
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negative binomial random variable
exercise 6 
On a (American) roulette wheel, there are 38 spaces: 18 black, 18 red, and 2 green. You’ve been at the 
casino for a while now and decide to leave after you have won 3 bets on red. What is the probability 
that you leave the casino after placing exactly 5 bets on red?
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https://www.math.wm.edu/~leemis/chart/UDR/UDR.html

so much more…
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