

Discrete Distributions

Lecture 8

Termeh Shafie

1

random variables

Given an experiment and the sample space Ω , a **random variable** is a function mapping an outcome $(\omega \in \Omega)$ into a real number, i.e.

$$X : \omega \in \Omega \rightarrow X(\omega) \in (-\infty, \infty)$$

- We use a capital letter X to denote a random variable
- The values of a random variable will be denoted with a lower case letter x
- The **range of a random variable** is the set of values it can take
- a **function of a random variable** is another mapping from the sample space to real numbers, so another random variable

random variables

- Many random experiments have outcomes that are numerical

For example:

- number of people on a train
- the time a customer will spend in line at the post office
- the number of people voting for a candidate in a political election

- In random experiments with outcomes not numerical, we map outcomes to numerical values

For example:

- in a coin toss experiment : $H \rightarrow 1$ and $T \rightarrow 0$

- A **random variable** associates a number with each outcome of a random experiment
- **Parameters** shape probability distributions of random variables

2

random variables

example

Toss a coin 3 times: the sample space is $\Omega : \{H, T\} \times \{H, T\} \times \{H, T\}$

Define the random variable: $X =$ the number of heads

What is the probability of each outcome of X ?

Outcome (ω)	HHH	HTH	THH	HHT	HTT	THT	TTH	TTT
$X(\omega)$	3	2	1	0				
$P(X = 3) = \frac{1}{8}$				$P(X = 1) = \frac{3}{8}$				
$P(X = 2) = \frac{3}{8}$					$P(X = 0) = \frac{1}{8}$			

3

4

random variables

exercise 1

Toss two dice, the sample space is given by $\Omega : \{1,2,3,4,5,6\} \times \{1,2,3,4,5,6\}$

Let the random variable X denote the sum of the two dice.

What is the probability of each outcome X ?

6					
5					
4					
3					
2					
1					
	1	2	3	4	5
	6				

5

discrete random variables: probability mass function

A random variable is discrete if its range is a countable (finite or infinite) set.

If X is a discrete random variable, the function given by $f(x) = P(X = x)$ for each x within the range of X is called the probability distribution of X , also called **probability mass function** (pmf)

A function can serve as the probability distribution of a discrete random variable X if and only if its values, $f(x)$, satisfy the conditions:

- $f(x) \geq 0$ for each value within its domain
- $\sum_x f(x) = 1$ where the sum is over all the x values within its domain.

6

discrete random variables: probability mass function

example (cont'd...)

Toss a coin 3 times: the sample space is $\Omega : \{H,T\} \times \{H,T\} \times \{H,T\}$

Define the random variable: $X =$ the number of heads

What is the probability distribution of X ?

Outcome (ω)	HHH	HTH	THH	HHT	HTT	THT	TTH	TTT
$X(\omega)$	3	2	1	1	0			

$P(X = 3) = \frac{1}{8}$

$P(X = 2) = \frac{3}{8}$

$P(X = 1) = \frac{3}{8}$

$P(X = 0) = \frac{1}{8}$

7

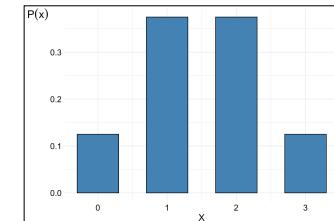
discrete random variables: probability mass function

example (cont'd...)

Toss a coin 3 times: the sample space is $\Omega : \{H,T\} \times \{H,T\} \times \{H,T\}$

Define the random variable: $X =$ the number of heads

What is the probability distribution of X ?



8

expected value

The **expected value**, is the (probability) weighted average of the possible outcomes

$$E(X) = \sum_x x \cdot P(X = x)$$

the center of gravity of the PMF

The expected value rule:

Let X be a random variable with PMF $f(x)$ and let $g(X)$ be a function of X . Then,

$$E[g(X)] = \sum_x g(x) \cdot f(x)$$

9

variance

The **variance** is given by

$$V(X) = E[(X - E(X))^2] = \sum_x (x - E(X))^2 \cdot P(X = x) = E[X^2] - E[X]^2$$

the standard deviation $\sqrt{V(X)}$ is usually easier to interpret

The variance is always nonnegative

We can find $V(X)$ by calculating the mean of $Z = (X - E[X])^2$ via the expected value rule

When computing the variance often we use a different (equivalent) form of the variance equation:

$$V(X) = E[X^2] - E[X]^2$$

exercise 2

Prove this

10

expected value and variance

exercise 3

Toss a coin 3 times. Define the random variable: $X =$ the number of heads

What is the expected value and variance of X ?

X	$f(x) = P(X = x)$
0	1/8
1	3/8
2	3/8
3	1/8

11

cumulative distribution function

If X is a discrete random variable, the function given by

$$F(x) = P(X \leq x) = \sum_{t \leq x} f(t)$$

for $-\infty < x < \infty$ is **the cumulative distribution** of X

The values $F(x)$ of the cumulative distribution of a discrete random variable X satisfies the conditions:

- $f(-\infty) = 0$ and $f(\infty) = 1$
- If $a < b$, then $F(a) \leq F(b)$ for any real numbers a and b

12

cumulative distribution function

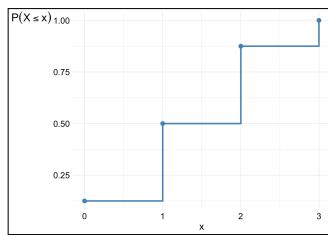
example (cont'd...)

Toss a coin 3 times: the sample space is $\Omega : \{H,T\} \times \{H,T\} \times \{H,T\}$

Define the random variable: $X =$ the number of heads

What is the cdf of X ?

x	$f(x) = P(X = x)$	$F(x) = P(X \leq x)$
0	1/8	1/8
1	3/8	4/8
2	3/8	7/8
3	1/8	8/8



13

summary: pmf and cdf

PMF of a discrete random variable X

gives the probability that X takes on a specific value

$$p(x_i) = P(X = x_i) = P(\{s \in S \mid X(s) = x_i\})$$

$$\sum_{x_i} p(x_i) = p(x_1) + p(x_2) + \dots = 1$$

$$p(x_i) \geq 0 \quad \forall x_i$$

$$P(X \in A) = \sum_{x_i \in A} p(x_i)$$

CDF of a discrete random variable X

gives the probability X takes on a value that is less than or equal to a specific value

$$F(x) = P(X \leq x), \quad \text{for any } x \in \mathbb{R}$$

$$F(x) = P(X \leq x) = P(X \in A) = \sum_{x_i \leq x} p(x_i)$$

$$p(x_i) \geq 0 \quad \forall x_i$$

$$P(X \in A) = \sum_{x_i \in A} p(x_i)$$

joint, marginal and conditional distributions

Contingency table based on relative frequencies

example

Suppose we randomly select a family from a large population. Let:

X = number of boys in the family

Y = number of girls in the family

where $X + Y \leq 4$.

15

joint, marginal and conditional distributions

Contingency table based on relative frequencies

example cont'd

Joint and marginal probability distributions

Number of boys (X)	Number of girls (Y)					$P(X = x) = \sum_y P(x, y)$
	0	1	2	3	4	
0	0.38	0.16	0.04	0.01	0.01	0.60
1	0.17	0.08	0.02	–	–	0.27
2	0.05	0.02	0.01	–	–	0.08
3	0.02	0.01	–	–	–	0.03
4	0.02	–	–	–	–	0.02
$P(Y = y) = \sum_x P(x, y)$		0.64	0.27	0.07	0.01	1.00

16

joint, marginal and conditional distributions

Contingency table based on relative frequencies

example

Conditional distributions.

$$P(X = x | Y = y) = \frac{P(X = x \cap Y = y)}{P(Y = y)}$$

Number of boys (X)	Number of girls (Y)					P(X = x)
	0	1	2	3	4	
0	0.59	0.59	0.57	1.00	1.00	0.60
1	0.27	0.30	0.29	—	—	0.27
2	0.08	0.07	0.14	—	—	0.08
3	0.03	0.04	—	—	—	0.03
4	0.02	—	—	—	—	0.02
	1.00	1.00	1.00	1.00	1.00	1.00

17

joint, marginal and conditional distributions

Contingency table based on relative frequencies

example

Conditional distributions.

are X and Y independent?

Number of boys (X)	Number of girls (Y)					P(X = x)
	0	1	2	3	4	
0	0.59	0.59	0.57	1.00	1.00	0.60
1	0.27	0.30	0.29	—	—	0.27
2	0.08	0.07	0.14	—	—	0.08
3	0.03	0.04	—	—	—	0.03
4	0.02	—	—	—	—	0.02
	1.00	1.00	1.00	1.00	1.00	1.00

18

vampirical vs. empirical

Odds Of Having Boy Or Girl Aren't Exactly 50-50, Study Reveals

The study found that some families are more likely to have children of the same sex than would be expected by chance.

Edited by: Srishtha Singh Sisodia | Feature | Jul 21, 2025 17:53 pm IST

Read Time: 3 mins

<https://www.science.org/doi/full/10.1126/sciadv.adu7402>

19

Bernoulli random variable

- A random variable for modeling binary events
- Two possible outcomes:
 - Success: value 1
 - Failure: value 0
- Single parameter p , probability of a success
- multiple Bernoulli r.v. can be combined to model more complex random variables
- Shorthand notation: $X \sim \text{Bern}(p)$
- $E(X) = p$, $V(X) = p(1 - p)$

$$P(X = x | p) = \begin{cases} p, & \text{if } x = 1 \\ 1 - p, & \text{if } x = 0 \end{cases}$$

X	$P(X = x)$
0	$1 - p$
1	p

20

geometric random variable

- A r.v. modeling the number of (identical) Bernoulli trials needed to obtain the first success
- Infinite outcomes $\{1, 2, 3, \dots, \infty\}$
- Single parameter p , probability of a success for each trial
- Shorthand notation: $X \sim \text{Geo}(p)$
- $E(X) = \frac{1}{p}$, $V(X) = \frac{1-p}{(p^2)}$

exercise 4

What is the probability of flipping a coin more than 4 times before getting a heads?

exercise 5

What is the expected number of rolls it will take to get a 7 when rolling two dice?

$$P(X = x | p) = p(1-p)^{x-1}$$

X	$P(X = x)$
1	p
2	$p(1-p)$
3	$p(1-p)^2$
4	$p(1-p)^3$
\vdots	\vdots
∞	$p(1-p)^\infty \approx 0$

21

binomial random variable

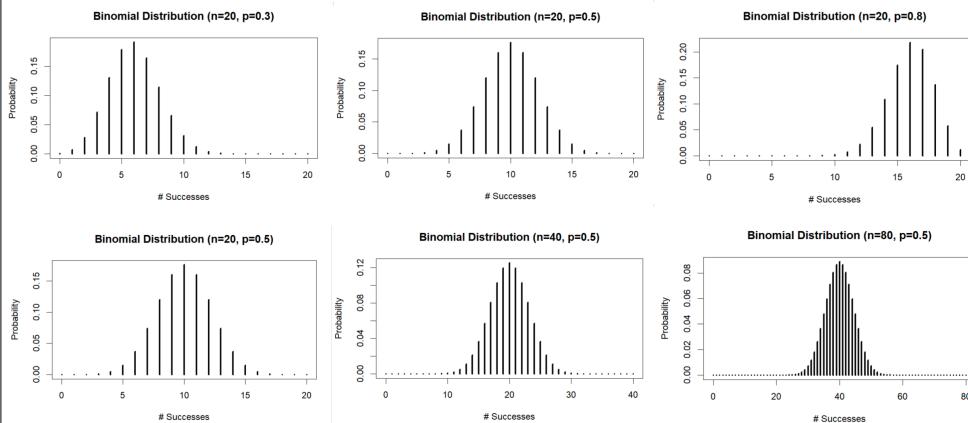
- A r.v. modeling the number of successes in a fixed number of independent Bernoulli trials.
- Discrete outcomes $\{0, 1, 2, 3, \dots, n\}$
- Two parameter
 - p : probability of a success for each trial
 - n : number of trials
- Shorthand notation: $X \sim \text{Binom}(n, p)$
- $E(X) = np$, $V(X) = np(1-p)$

$$P(X = x | n, p) = \binom{n}{x} p^x (1-p)^{n-x}$$

X	$P(X = x)$
0	$\binom{n}{0} p^0 (1-p)^n$
1	$\binom{n}{1} p^1 (1-p)^{n-1}$
2	$\binom{n}{2} p^2 (1-p)^{n-2}$
\vdots	\vdots
$n-1$	$\binom{n}{n-1} p^{n-1} (1-p)^1$
n	$\binom{n}{n} p^n (1-p)^0$

22

binomial random variable: parameters shaping pmf



23

binomial random variable

example (cont'd...)

Toss a coin 3 times: the sample space is $\Omega : \{H, T\} \times \{H, T\} \times \{H, T\}$

Define the random variable: $X = \text{the number of heads}$

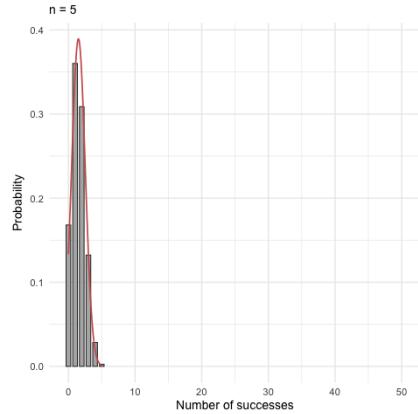
What is the probability distribution of X ?

$$X \sim \text{Bin}(n = 3, p = 0.5)$$

$$\Rightarrow P(X = x) = \binom{n}{x} p^x (1-p)^{n-x} = \binom{3}{x} 0.5^x (0.5)^{3-x}$$

24

linking binomial and normal



25

multinomial random variable

- The generalization of the binomial distribution with more than two possible outcomes
- n independent trials
- Each trial results in one of k outcomes that are mutually exclusive
- For any trial, the probabilities of the k outcomes p_1, \dots, p_k are mutually exclusive and collectively exhaustive
- Shorthand notation: $(X_1, X_2, \dots, X_k) \sim \text{Multinomial}(n, p_1, p_2, \dots, p_k)$, where $\sum_{i=1}^k p_i = 1$
- $E(X_i) = np_i, V(X_i) = np_i(1 - p_i)$

$$P((X_1 = x_1) \cap \dots \cap (X_k = x_k)) = \begin{cases} \frac{n!}{x_1! \dots x_k!} \prod_{i=1}^k p_i^{x_i}, & \text{when } \sum_{i=1}^k x_i = n, \\ 0, & \text{otherwise.} \end{cases}$$

26

Poisson random variable

- A r.v. that expresses the probability of how many times an event occurs in a fixed period of time if these events
 - occur with known average rate of λ
 - and independently of each other
- Discrete outcomes $\{0, 1, 2, 3, \dots\}$
- Shorthand notation: $X \sim \text{Poisson}(\lambda)$
- $E(X) = V(X) = \lambda$
- If the data shows overdispersion (variance > mean) or underdispersion (variance < mean), other models like the Negative Binomial

$$P(X = x | \lambda) = \frac{e^{-\lambda} \lambda^x}{x!}$$

$$\begin{array}{c|c} X & P(X = x) \\ \hline 0 & e^{-\lambda} \\ 1 & e^{-\lambda} \lambda \\ 2 & e^{-\lambda} \frac{\lambda^2}{2} \\ \vdots & \vdots \end{array}$$

27

linking binomial and Poisson

What if we take the limit of $P(X = x)$ as n approaches infinity?

$$P(X = x) = \binom{n}{x} p^x (1 - p)^{n-x} \rightarrow \lim_{n \rightarrow \infty} P(X = x) = \frac{e^{-\lambda} \lambda^x}{x!} = \frac{\lambda^x}{x!} e^{-\lambda}.$$

Let's replace p with $\frac{\lambda}{n}$ and $q = 1 - p$ with $1 - \frac{\lambda}{n}$ so that $P(X = x) = \binom{n}{x} \left(\frac{\lambda}{n}\right)^x \left(1 - \frac{\lambda}{n}\right)^{n-x}$.

Write out the binomial coefficient and pmf becomes:

$$P(X = x) = \frac{n(n-1)(n-2)\dots(n-x+1)}{x!} \cdot \frac{\lambda^x}{n^x} \left(1 - \frac{\lambda}{n}\right)^{n-x}$$

→ There are exactly x factors in the first numerator!

28

linking binomial and Poisson

Use the power of multiplication and swap denominators between the first and second fraction:

$$P(X = x) = \left[\frac{n}{n} \cdot \frac{n-1}{n} \cdots \frac{n-x+1}{n} \right] \cdot \frac{\lambda^x}{x!} \left(1 - \frac{\lambda}{n}\right)^{n-x}.$$

We split up the last factor using the rules of exponents: $\left(1 - \frac{\lambda}{n}\right)^{n-x} = \left(1 - \frac{\lambda}{n}\right)^n \left(1 - \frac{\lambda}{n}\right)^{-x}$, which gives

$$P(X = x) = \left[\frac{n}{n} \cdot \frac{n-1}{n} \cdots \frac{n-x+1}{n} \right] \cdot \frac{\lambda^x}{x!} \left(1 - \frac{\lambda}{n}\right)^n \left(1 - \frac{\lambda}{n}\right)^{-x}.$$

Now take the limit as $n \rightarrow \infty$

$$\text{Each factor } \frac{n-k}{n} \rightarrow 1 \text{ for fixed } k, \quad \left(1 - \frac{\lambda}{n}\right)^n \rightarrow e^{-\lambda}, \quad \left(1 - \frac{\lambda}{n}\right)^{-x} \rightarrow 1 \text{ for fixed } x.$$

29

linking binomial and Poisson

So the whole expression tends to

$$P(X = x) \rightarrow \frac{\lambda^x}{x!} e^{-\lambda} \text{ which is the Poisson pmf.}$$

We showed that as $n \rightarrow \infty$ and $p = \frac{\lambda}{n}$, the Binomial pmf converges to the Poisson pmf.

30

negative binomial random variable

- A generalization of the geometric distribution $\text{Pascal}(1,p) = \text{Geometric}(p)$
 - How many trials do we need to run until we observe the r^{th} success?
 - How many failures happen before the r^{th} success occurs?
- X = number of trials needed to get r successes with possible $x = r, r+1, r+2, \dots$
- Two parameter
 - the number of **successes** we are waiting for
 - the probability that a single experiment gives a "success"
- Shorthand notation: $X \sim \text{NegBin}(r, p)$
- $E(X) = \frac{r}{p}$, $V(X) = \frac{r(1-p)}{p^2}$

31

negative binomial random variable

PMF (success-based form):

$$P(X = x | r, p) = \binom{x-1}{r-1} p^r (1-p)^{x-r}$$

- The last trial (the x -th) must be a success, completing the r -th success.
- The first $x-1$ trials must contain:
 - $r-1$ earlier successes
 - $x-r$ failures
- These can be arranged in $\binom{x-1}{r-1}$ different ways.
- Thus the probability is: (number of valid sequences) $\times p^r (1-p)^{x-r}$.

32

negative binomial random variable

PMF (failure-based form):

$$P(K = k | r, p) = \binom{k+r-1}{k} p^r (1-p)^k.$$

where:

- $k = x - r$ is the number of failures,
- the last trial again must be a success,
- the first $k + r - 1$ trials contain k failures and $r - 1$ successes.

33

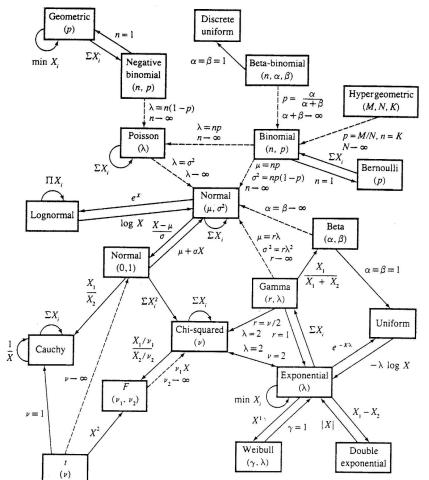
negative binomial random variable

exercise 6

On a (American) roulette wheel, there are 38 spaces: 18 black, 18 red, and 2 green. You've been at the casino for a while now and decide to leave after you have won 3 bets on red. What is the probability that you leave the casino after placing exactly 5 bets on red?

34

so much more...



35