

continuous Distributions

Lecture 9

Termeh Shafie

1

continuous random variables

A **continuous random variable** is one that takes values over a continuous range: the whole real line; an interval on the real line, perhaps infinite; or a disjoint union of such intervals.

A **continuous random variable** X must have the property that no possible value has positive probability:

$$P(X = x) = 0 \text{ for all } x \in \mathbb{R}$$

3

recall from last lecture: discrete random variables

A random variable is discrete if its range is a countable (finite or infinite) set.

If X is a discrete random variable, the function given by $f(x) = P(X = x)$ for each x within the range of X is called the probability distribution of X , also called **probability mass function** (pmf)

the probability of an event A associated with a discrete random variable X is found by summing up its probability mass function over the values in that set: $P(X \in A) = \sum_{x \in A} f(x)$

this is not feasible when finding the probability of an event A associated with a continuous random variable X

2

probability density function

A random variable X is continuous if there is a nonnegative function $f(x)$, called the **probability density function** (pdf) of X , such that

$$P(X \in A) = \int_A f(x) dx$$

for every subset of A of the real line. Specifically, the probability that X is in an interval is

$$P(a \leq X \leq b) = \int_a^b f(x) dx$$

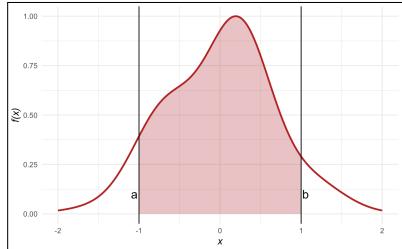
For any PDF we know that $f(x) \geq 0$ for all values of x and the total area under the whole graph is 1

$$\int_{-\infty}^{\infty} f(x) dx = 1$$

Note: $P(a \leq X \leq b) = P(a < X \leq b) = P(a \leq X < b) = P(a < X < b)$

4

probability density function



For $f(x)$ to be a legitimate pdf, it must satisfy the following two conditions:

1. $f(x) \geq 0$ for all values of x
2. $\int_{-\infty}^{\infty} f(x)dx = 1$ i.e. area under the entire graph of $f(x) = 1$

5

probability density function

exercise 1

Let X be a continuous random variable with probability density function $f(x) = 3x^2$, $0 \leq x \leq 1$

- Verify that $f(x)$ is a valid probability function
- What is $P(1/2 \leq X \leq 1)$?
- What is $P(X = 1/2)$?

exercise 2

Let X be a continuous random variable with probability density function $f(x) = \frac{x^3}{4}$ for $0 \leq X \leq c$.

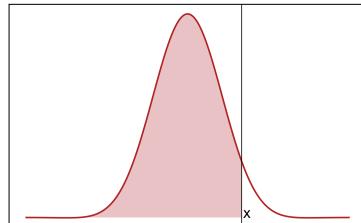
What is the value of the constant c that makes $f(x)$ a valid probability density function?

6

cumulative distribution function

For a continuous random variable X with pdf $f(x)$ its **cumulative distribution function** (cdf) is defined as follows

$$F(x) = P(X \leq x) = \int_{-\infty}^x f(y)dy$$



7

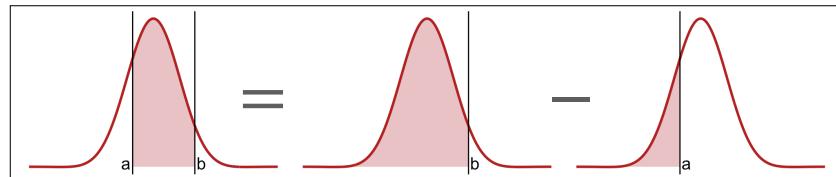
computing probabilities with cdf

Let X be a continuous random variable with pdf $f(x)$ and cdf $F(x)$. Then for any value a we have that

$$P(X \leq a) = F(a) \quad P(X > a) = 1 - F(a)$$

and for any two values $a < b$

$$P(a \leq X \leq b) = F(b) - F(a)$$



8

computing probabilities with cdf

exercise 3

Random variable T is distributed with the following probability density function:

$$f(t) = \begin{cases} ct(t-1) & \text{for } 0 \leq t \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

- Calculate the value of c .
- Calculate the cumulative distribution function $F(t)$.
- Use the cdf $F(t)$ to calculate $P(1/3 \leq T \leq 2/3)$.

9

summary: pdf and cdf

PDF of a continuous random variable X

- consider an integral – continuous analogue to 'sums'
- no area in a line – so no probability assigned to RV taking on a specific value

$$f(x) \geq 0, \quad \text{for all } x \in \mathbb{R}$$

f is piecewise continuous

$$\int_{-\infty}^{\infty} f(x) dx = 1$$

$$P(a \leq X \leq b) = \int_a^b f(x) dx$$

CDF of a continuous random variable X

- CDF is found by integrating the PDF
- PDF is found by differentiating the CDF
- the CDF is always non-decreasing

$$F(x) = \int_{-\infty}^x f(y) dy \quad \text{for } -\infty < x < \infty$$

Why do we use y instead of x ?

10

expected value of a continuous random variable

Let X be a continuous random variable with pdf $f(x)$. The expected value $E(X)$ is calculated as a weighted integral

$$E(X) = \int_{-\infty}^{\infty} xf(x) dx$$

Let X be a continuous random variable with pdf $f(x)$. If $h(X)$ is any real-valued function of X then we can calculate an expected value for that as

$$E(h(X)) = \int_{-\infty}^{\infty} h(x)f(x) dx$$

variance of a continuous random variable

Let X be a continuous random variable with pdf $f(x)$ and mean $E(X) = \mu$. The variance $V(X)$ is is the expected value of the squared distance to the mean

$$V(X) = E((X - \mu)^2) = \int_{-\infty}^{\infty} (x - \mu)^2 \cdot f(x) dx$$

The standard deviation is given by $\sqrt{V(X)}$.

11

12

theoretical joint distributions

For two continuous random variables, we can write their joint pdf the same way: $f(x, y)$ "summing" the small bits of probability $f(x, y)dxdy$ over some region $X \in A, Y \in B$

Let X, Y be a continuous random variables. The joint pdf for X and Y is $f(x, y) \geq 0$

The joint range is the set of pairs (x, y) that have non-zero density.

The double integral over all values must be 1

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y)dxdy = 1$$

13

theoretical joint distributions

exercise 4

Let X and Y be two jointly continuous random variables with the following joint pdf

$$f(x, y) = \begin{cases} x + cy^2 & \text{for } 0 \leq x \leq 1, 0 \leq y \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

- Find a sketch the joint range of X and Y (i.e. $\Omega_{X,Y}$).
- Find the constant c that makes $f(x, y)$ a valid joint pdf.
- Find $P(0 \leq X \leq 1/2, 0 \leq Y \leq 1/2)$.

14

marginal distributions

Let X, Y be jointly distributed continuous random variables with joint pdf $f(x, y)$.

The marginal pdf's of X and Y are respectively given by the following:

$$f(x) = \int_{-\infty}^{\infty} f(x, y)dy$$

$$f(y) = \int_{-\infty}^{\infty} f(x, y)dx$$

Note this is exactly like for joint discrete random variables, with integrals instead of sums.

15

theoretical joint distributions

exercise 5

Find the marginal pdf $f(x)$ and $f(y)$ given the joint pdf:

$$f(x, y) = \begin{cases} x + \frac{3}{2}y^2 & \text{for } 0 \leq x \leq 1, 0 \leq y \leq 1 \\ 0 & \text{otherwise} \end{cases}$$

16

some continuous random variables and their pdfs

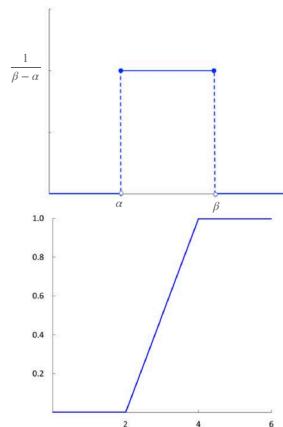
uniform distribution $X \sim \text{Unif}(\alpha, \beta)$

A continuous random variable X has uniform distribution on the interval $[\alpha, \beta]$ for values $\alpha \leq \beta$ if it has the following pdf:

$$f(x) = \begin{cases} \frac{1}{\beta - \alpha} & \text{for } \alpha \leq x \leq \beta \\ 0 & \text{otherwise} \end{cases}$$

The cdf is given by

$$F(x | \alpha, \beta) = \begin{cases} 0 & \text{if } x < \alpha \\ \frac{x - \alpha}{\beta - \alpha} & \text{if } \alpha \leq x \leq \beta \\ 1 & \text{if } x > \beta \end{cases}$$



17

some continuous random variables and their pdfs

normal distribution $X \sim N(\mu, \sigma^2)$

A continuous random variable X has normal distribution with parameters μ and σ^2 if it has the following pdf:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

If continuous random variable $X \sim N(\mu, \sigma^2)$ then random variable Z defined as

$$Z = \frac{X - \mu}{\sigma} \quad \text{z scores}$$

has standard normal distribution $Z \sim N(0,1)$

18

some continuous random variables and their pdfs

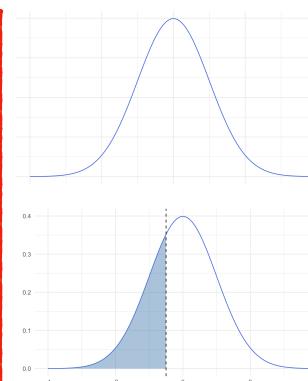
standard normal distribution $Z \sim N(0,1)$

The normal distribution with parameters $\mu = 0$ and $\sigma = 1$ is the standard normal distribution and a random variable with that distribution is a standard normal random variable, usually named Z and with the following probability density function.

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}}$$

The corresponding cumulative distribution function is written $\Phi(z)$

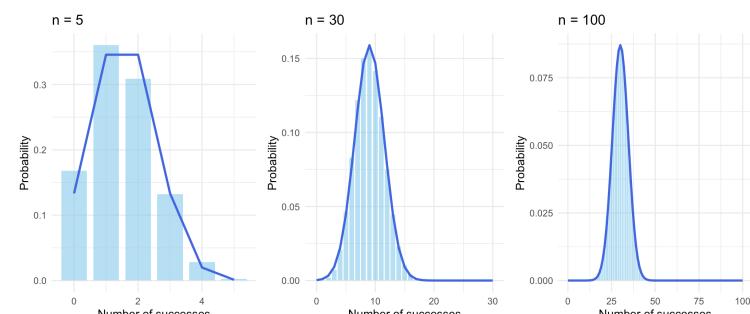
$$\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^z e^{-\frac{x^2}{2}} dx$$



19

some continuous random variables and their pdfs

the importance of normal distribution...



np ≥ 10

20

central limit theorem (CLT)

Regardless of the shape of a population's distribution, if the sample size n is large enough ($n \geq 30$) and there is finite variance, then...

- the distribution of the sample means will be approx. normal
→ shape of distribution of X becomes more bell-shaped and symmetric
- centre of the distribution of \bar{X} remains μ
- the spread of the distribution increases and it becomes more 'peaked'

21

law of large numbers (LLN)

The law of large numbers states that for an increasing number of trials, the sample average should approach the population average.

- guarantee for long-term and stable results of random events
- necessary for statistical modelling → remember asymptotic normality, efficiency and consistency?
- the spread of the distribution increases and it becomes more 'peaked'

Exceptions: samples from Cauchy and some Pareto distributions ($\alpha < 1$) may not converge as n increases! → often due to heavy tails (skewness)

22

some continuous random variables and their pdfs

gamma distribution $X \sim \text{Gamma}(\alpha, \beta)$

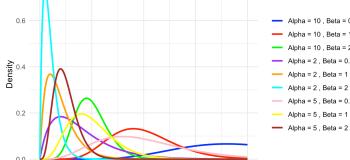
A continuous random variable X has Gamma distribution with parameters α and β (both positive) if

$$f(x) = \begin{cases} \frac{1}{\beta^\alpha \Gamma(\alpha)} x^{\alpha-1} e^{-x/\beta} & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$$

where $\Gamma(\alpha)$ is the gamma function

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} dx,$$

which cannot be expressed in closed form analytical solution.



$$\alpha = 1 \implies \text{Exponential} \left(\beta = \frac{1}{\lambda} \right)$$

$$\alpha = \frac{v}{2}, \beta = 2 \implies \text{chi-square } \chi^2(v)$$

23

some continuous random variables and their pdfs

exponential distribution $X \sim \text{Exp}(\lambda)$

A continuous random variable X has exponential distribution with parameter λ , for some $\lambda > 0$, if it has the following pdf

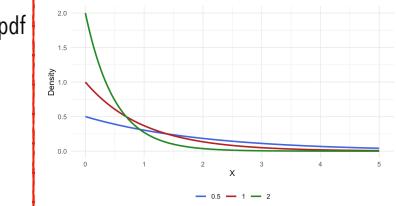
$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$$

and the following cdf

$$F(x) = \begin{cases} 1 - e^{-\lambda x} & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases}$$

This distribution is memoryless i.e.

$$P(X \geq a | X \geq b) = P(X \geq a - b)$$



The exponential distribution is a specific version of gamma family distributions...

24

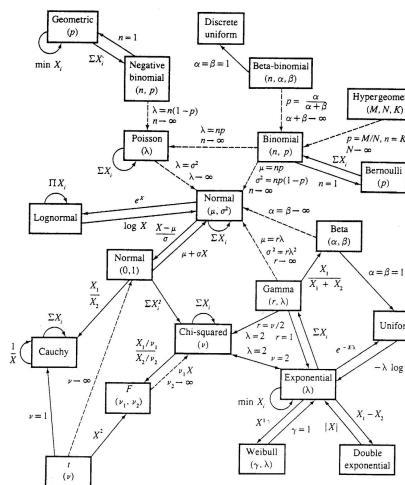
some continuous random variables and their pdfs

important distributions for statistical hypothesis tests

- Chi-squared (χ^2) distribution (special case of the gamma distribution, where $\alpha = n/2$ and $\beta = 2$)
- The (Student's) t Distribution (like normal but "thicker" tails)
- The F Distribution (ratio of two χ^2 distributed variables)

read up on these distributions (and others) in your text book

25



<https://www.math.wm.edu/~leemis/chart/UDR/UDR.html>

26