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what is linear algebra?
Linear 

• having to do with lines, planes, space, etc.  
• example:    (and not ) 

Algebra 
• solving equations involving numbers and symbols 
• “reunion of broken parts”

x + y + 3z = 7 sin, log, x2, …

Linear algebra is the math of vectors and matrices, so we’ll start by definitions and the 
mathematical operations we can perform on vectors and matrices.
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why do we need linear algebra?
• Coordinates and Geometry:  

 Linear algebra provides a way to represent and understand geometric concepts like lines, planes,   
  and transformations in higher dimensions. 

• Equations Systems:  
 It offers tools to solve systems of linear equations, which appear in countless areas of study. 
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• object that has both a magnitude and a direction (physics) 
• a list of numbers (data science) 
• vector is rooted at origin (0,0) 
• components: the entries of a vector 
• the dimension of a vector is the number of components in the vector. 
• notation: bold face ( , , )  or arrow over ( )x y z ⃗x, ⃗y, ⃗z

what is a vector?

direction

tail

head

⏟

magnitude
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what is a vector?
[−2

3 ]

[ 4
−2]
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[
−1
1
3 ]

[
1

−1
0 ]

what is a vector?
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vector operations

⃗v = [1
2]

⃗w = [ 3
−1]

⃗v + ⃗w = [1
2] + [ 3

−1]
= [ 1 + 3

2 + (−1)] = [4
1]

(same idea as when you add numbers on a number line)

vector addition
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vector operations

⃗v = [1
2]

scalar multiplication

2 ⃗v

−2 ⃗v

1
2

⃗v

the process of stretching and squishing  
 is called scaling

the scalars here are 2, − 2 and 
1
2

2 ⃗v = 2 [1
2] = [2

4]
−2 ⃗v = − 2 [1

2] = [−2
−4]

1
2

⃗v =
1
2 [1

2] = [0.5
1 ]
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magnitudes and direction
example 

What is the magnitude of  

The magnitude of a vector is the distance from the endpoint of the vector to the origin, i.e. its length 

This vector extends 4 units along the x-axis, and 3 units along the y-axis. 

Magnitude  is computed using Pythagorean Theorem : 

 

The magnitude of a vector is a scalar value.

⃗a = [4
3]?

∥ ⃗a∥ (x2 + y2 = z2)

∥ ⃗a∥ = x2 + y2 = 42 + 32 = 5
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basis vectors

̂ı̂𝚥

the  coordinate of a vector can be viewed as 
a scalar scaling    

the  coordinate of a vector can be viewed as 
a scalar scaling   

 and  are unit vectors: they have length 1

x
̂ı

y
̂𝚥

̂ı ̂𝚥

⃗v = [ 3
−2]

⃗v = (3) ̂ı + (−2) ̂𝚥
( ,  ) are called the basis vectors of  
the  coordinate system

̂ı ̂𝚥
xy

Any vector in the plane can be written  
as a combination of these two vectors
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basis vectors
what if we chose some other basis vector? 

the choice of basis vector effect the 
numerical values of the vectors 

scaling vectors and adding them is a  
linear combination of those two vectors

⃗v

⃗w
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⃗v1.5

⃗w0.5

basis vectors

⃗v = [1
2]

what if we chose some other basis vector? 

the choice of basis vector effect the 
numerical values of the vectors 

scaling vectors and adding them is called a  
linear combination of those two vectors
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⃗v1.5

⃗w0.5

what if we chose some other basis vector? 

the choice of basis vector effect the 
numerical values of the vectors 

scaling vectors and adding them is called a  
linear combination of those two vectors
the span of the vector  and  is the set of all 
their linear combinations 

 

where  

⃗v ⃗w

a ⃗v + b ⃗w

a, b ∈ ℝ .

basis vectors
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⃗v = [1
2]

⃗w = (2
4)

the span of the vector  and  is the set of all 
their linear combinations 

 

where  

⃗v ⃗w

a ⃗v + b ⃗w

a, b ∈ ℝ . ⃗w = [ 1
−2]

what if we chose some other basis vector? 

the choice of basis vector effect the 
numerical values of the vectors 

scaling vectors and adding them is called a  
linear combination of those two vectors

If  and  do not line up (they are not scalar 
multiples of each other), their span is a 
plane.  If they do line up, their span is a line.

⃗v ⃗w

In the latter case the vectors are linearly dependent

basis vectors
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linear combinations: planes and lines
• Scaling vectors and adding them is a linear combination of those two vectors 
• Geometrically, the linear combinations of a nonzero vector form a line. The linear combinations of two 

nonzero vectors form a plane, unless the two vectors are collinear, in which case they form a line.
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linear combinations: planes and lines
• Scaling vectors and adding them is a linear combination of those two vectors 
• Geometrically, the linear combinations of a nonzero vector form a line. The linear combinations of two 

nonzero vectors form a plane, unless the two vectors are collinear, in which case they form a line.

• Determining whether a given vector is in the linear span of a given set of vectors, 
and finding coefficients for linear combinations essentially means solving  

• a system of linear equations                                                              (we’ll return to this later)
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linear independence

⃗v

⃗w

Linearly dependent means  where   

Linearly independent means  where  
⃗u = a ⃗v + b ⃗w a, b ∈ ℝ .
⃗u ≠ a ⃗v + b ⃗w a, b ∈ ℝ .

the basis of the vector space is a set of linearly independent 
vectors that span the full space 
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linear independence and spanning vectors
•  is in or the plane spanned by  
•  is a linear combination of , so  is 

not linear independent.

⃗w span( ⃗u, ⃗v) ( ⃗u, ⃗v)
⃗w ( ⃗u, ⃗v) ( ⃗u, ⃗v, ⃗w )
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linear independence and spanning vectors
• Since  is not in  ,   is linear 

independent.
⃗w span( ⃗u, ⃗v) ( ⃗u, ⃗v, ⃗w )
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the vector space

⃗v

⃗w

A vector space is an abstract collection (a set) of objects called vectors, 
 which can be added together and multiplied ("scaled") by numbers (scalars),  

all while obeying specific rules (axioms)
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the vector space
The ‘rules’ (axioms) to hold true for all vectors   and scalars  are the following 
• Closure:  
• Commutative:  
• Associativity:  
• Identity for Addition: There is a zero vector  such that  
• Distributive Property:   and   
• Associativity of Scalars:  
• Multiplicative Identity: 

⃗u, ⃗v, ⃗w ∈ V a, b
⃗u + ⃗v ∈ V, a ⃗v ∈ V

⃗u + ⃗v = ⃗v + ⃗u
( ⃗u + ⃗v) + ⃗w = ⃗u + ( ⃗v + ⃗w )

0⃗ ∈ V ⃗u + 0⃗ = ⃗u
a( ⃗u + ⃗v) = a ⃗u + a ⃗v (a + b) ⃗u = a ⃗u + b ⃗u
(ab) ⃗u = a(b ⃗u)
1 ⃗u = ⃗u
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linear transformations & matrices

22

̂ı

̂𝚥
[−1

2 ]

how to describe linear transformations numerically? 
by using unit vectors  and  and keeping  
track of where they land after the transformation 

example 
 

̂ı ̂𝚥

⃗v = − 1 ̂ı + 2 ̂𝚥

linear transformations
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how to describe linear transformations numerically? 
by using unit vectors  and  and keeping  
track of where they land after the transformation 

example 
 

 

                         

        

̂ı ̂𝚥

⃗v = − 1 ̂ı + 2 ̂𝚥
⃗vtransformed = − 1 ̂ıtransformed + 2 ̂𝚥transformed

= − 1 [ 1
−2] + 2 [3

0]
= [ −1(1) + 2(3)

−1(−2) + 2(0)] = [5
2]

linear transformations
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how to describe linear transformations numerically? 
by using unit vectors  and  and keeping  
track of where they land after the transformation 

generally 

                     

 

̂ı ̂𝚥

̂ı → [ 1
−2] ̂𝚥 → [3

0]
[x
y] → x [ 1

−2] + y [3
0] = [ 1x + 3y

−2x + 0y]

linear transformations
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how to describe linear transformations numerically? 
by using unit vectors  and  and keeping  
track of where they land after the transformation 

generally 

                     

 

̂ı ̂𝚥

̂ı → [ 1
−2] ̂𝚥 → [3

0]
[x
y] → x [ 1

−2] + y [3
0] = [ 1x + 3y

−2x + 0y]

linear transformations

any 2D linear transformation is completely  
described using only these four numbers 

let’s put them in a 2x2 grid aka a matrix
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a linear transformation is a matrix

[ 1 3
−2 0]

where  landŝı where  landŝ𝚥
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matrix as a transformation of space

[ 1 3
−2 0]

[x
y]

⟹ x [ 1
−2] + y [3

0]

any vector

adding scaled versions of our new basis vectors
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[a b
c d]
[x
y]

⟹ x [a
c] + y [b

d] = [ax + by
cx + dy]

generally: 

= [a b
c d] [x

y]

⏟matrix vector multiplication

matrix as a transformation of space
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matrix as a transformation of space
example 
rotate space 90° counterclockwise

[0 −1
1 0 ]

where  landŝı where  landŝ𝚥

[x
y]
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matrix as a transformation of space
example 
the identity matrix (no transformation)

[1 0
0 1]

= [1x + 0y
0x + 1y] = [x

y]

[x
y]
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matrix as a transformation of space
example 
a shear transformation

[1 1
0 1]
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matrix as a transformation of space
example 
a shear transformation

[1 1
0 1]

= [1x + 1y
0x + 1y] = [x + y

y ]
[x
y]
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