Recall: Feature Engineering
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“Non-linear” Linear Regression —

Lecture 8

Termeh Shafie when do we do this and why?

Basis Function

A family of functions/transformations that can be applied to a variable X: f(X)), f(X;), f(X3),...

Y = o+ PifiX) + +5,/X) + B X5) + - + [ XD + e

Polynomial Regression Models

Polynomial regression fits a nonlinear relationship by modeling
the response as a polynomial function of the predictor




The Assumption of Linearity

in reality the relationships between predictors and the response

are almost never exactly (first order) linear...

Polynomial Regression Models
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Polynomial Regression Models
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Polynomial Regression Models

Polynomial Regression Models

_ 2 3 20 in general, polynomial models are of the form
Y =B+ I X+SX+ S X7 4 oo + froX” + € 9 poly s X :
X Y= ﬂo + ﬁ1X+ﬂ2X + ﬂ3X Foeeeeee + ﬂnX +e€
1500 b where d is called the degree of the polynomial
1000 ¢ non-linear relationship between predictors and response captured by polynomial
terms but model remains linear in the parameters
[0}
§ e example: model can be written as
Q.
8 50 Y =0+ X\ +5X, + P3X5+ €
where X; = X, X, = X2, X; = X°
0
e we can use LS for estimation
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Polynomial Regression Models: Choosing d

m preseut data
m future data

Polynomial Regression Models
Example: Wage (ISLR2)
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95% confidence interval for the mean prediction at x:
J(x) £ 2 X SE[f(x)] where SE[f(x)] is the standard error of the mean prediction at x
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Polynomial Regression Models

higher—-degree polynomials wiggle more
and become unstable at the ends

Polynomial Regression Models
Example: Wage (ISLR2)

Analysis of Variance Table

Model 1: wage ~ poly(age, 1)

Model 2: wage ~ poly(age, 2)

Model 3: wage ~ poly(age, 3)

Model 4: wage ~ poly(age, 4)

Model 5: wage ~ poly(age, 5)

Res.Df RSS Df Sum of Sq F Pr(>F)
2998 5022216
2997 4793430
2996 4777674
2995 4771604

5 2994 4770322

Signif. codes: @ ‘***’ 9.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1  ’ 1

228786 143.5931 < 2.2e-16 ***
15756  9.8888 0.001679 **
6070 3.8098 0.051046 .
1283  0.8050 0.369682

~wN P

1
1
1
1

ANOVA
sequential comparisons based on the F-test
For each step:

H, : The decrease in RSS from adding the new polynomial term is not significant.

If hypothesis is rejected we move on to next comparison
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Step Functions

A step function models the predictor by dividing its range into
intervals and assigning a constant fitted value within each interval

Step Functions

Y = By + BC,)+B,Co(X) + -+ + BCiX) + €
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Step Functions

1500
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Y = fy+ p1Ci(XD+S,C(X) + -+ + frCr(X) + €

CGX) =IX<c)
CiX) =Ilc;<X<c)

Step Functions

Co(X)

=IX< cp)

choosing K:
1. Fit models with K =1, 2,

., K_max intervals

X <o)

8 o . 2. Compute test error or cross-validation error
2 500 g CK_l(X) = I(CK—l <X< CK) 3. Choose K that minimizes (or is near—-minimum) error <X <cg)
) Ck(X) =Icxk<X) ' Ce(X) =g <X)
° where I( - ) is an indicator function
-500 :
-10 5 0 5 10
predictor
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Step Functions Step Functions
Example: Wage (ISLR2) Example: Wage (ISLR2)
1 cutpoint 2 cutpoints 1 cutpoint 2 cutpoints
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As you increase the number of cut-points, a step function:
» Becomes more flexible, fitting more of the pattern
» Reduces bias, because it approximates the trend better
» Increases variance, because each interval uses fewer data points
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Regression Splines

a spline is a piecewise function
where each segment is a polynomial

Regression Splines

The basis of regression splines is piecewise polynomial regression
e Standard polynomial regression
Y = B+ BIXASX 4 X5 4 e +BX"+e
« Piecewise polynomial regression:
Boi + B X+ o X2+ X2+ + B Xl+e ifX<c
ﬂ02+ﬂ12X+ﬂ22X2+ﬂ32X3+ +ﬂd2Xd+€ |fXZ Cc
e The cis called a knot
o When there is no knot we have standard polynomial regression.

« When we include only the intercepts terms, we have step function regression.
o If we have K knots we are fitting K + 1 polynomial models
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Regression Splines
Example: Wage (ISLR2)
Piecewise cubic polynomial with a single knot placed a age = 50:

e — filage) = By, + B X + B X2+ By X ifage < 50
flage) = foo + PoX + Por X2 + B3 X if age > 50

Piecewise Cubic
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Regression Splines
Example: Wage (ISLR2)
Piecewise cubic polynomial with a single knot placed a age = 50. Constraints:

1. fi(age = 50) = f,(age = 50)

Piecewise Cubic Continuous Piecewise Cubic

discoutinvity

Wage
|

Wage
100 150 200 250

100 150 200 250

:
|
3
/

50
I
5

23




Regression Splines
Example: Wage (ISLR2)

Piecewise cubic polynomial with a single knot placed a age = 50. Constraints:

1. fi(age = 50) = f,(age = 50)
2. fi(age = 50) = f(age = 50)
3. f{(age = 50) = fy(age = 50)

Piecewise Cubic

Continuous Piecewise Cubic

splines are meant to be continuous
and have continuous derivatives!

Cubic Spline

Regression Splines
Example: Wage (ISLR2)

Linear Spline
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Quadratic Spline
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Cubic Spline
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Regression Splines

Constraints and Degrees of Freedom

Natural Splines

e Regression splines have high variance at the outer range of the predictor (the tails)
e The confidence intervals at the tails can be wiggly (especially for small samples)

In the previous example, we started with a cubic piecewise polynomial with 8
unconstrained parameters, so we started with 8 degrees of freedom (df)

We initially imposed one constraint, which restricted one parameter, so we lost a
degree of freedom 8 — 1 =7

With the further two constraints: 8 — 3 = 5 df

In general, a cubic spline with K knots has 4 + K degrees of freedom. In R we can
we can specify either the number of knots or just the degrees of freedom.

A degree-d regression spline is a piecewise degree-d polynomial
with continuity in derivatives up to degree d — 1 at each knot

Natural splines are extensions of regression splines which remedy these problems

Two additional constraints at each boundary region:
1. The spline function is constrained to be close to linear when X < smallest knot
2. The spline function is constrained to be close to linear when X > largest knot

.

\ — Cubicspline o

—— Natural spline
]
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How Many Knots?

e Provided there is evidence from the data we can do it empirically:
» Place knots where it is clearly obvious there is a distributional shift in direction
» Place more knots on regions where we see more variability
» Place fewer knots in places which look more stable

¢ Alternatively, we can place knots in a uniform fashion (25th, 50th, 75th percentiles)

Smoothing Splines

a smoothing spline is a non parametric approach
designed to balance fit with smoothness
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Smoothing Splines

Unlike regression splines and natural splines, there are no knots!
The discrete problem of selecting a number of knots into a continuous penalization problem

We seek a function g among all possible functions (linear + non-linear) which minimizes

n
model fit + roughness penalty term = Z ;= g(x,-))2 +4 [(g”(t))zdt
model fit term catches non-linearities

The function g that minimizes the above quantity is called a smoothing spline

A > 0is the tuning penalty parameter, also called roughness penalty

» when 4 = 0 we get an extremely wiggly non-linear function g (completely useless)

» as A increases, the function becomes smoother

» theoretically: when 1 — o0, g”is zero everywhere = g(X) = f, + $,X i.e. linear model

wage

Cubic vs. Natural vs. Smoothing Splines

Example: Wage (ISLR2)

Training data = 50

Cubic spline
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Smoothing spline

¢ A smoothing spline is the natural cubic spline whose knots are at all the data points x;, X, X3, ..., X, 30 40 50 60 70 30 40 50 60 70 30 40 50 60 70
age age age
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Cubic vs. Natural vs. Smoothing Splines

Example: Wage (ISLR2)
Training data = 200

Cubic spline

Natural cubic spline

Smoothing spline

Cubic vs. Natural vs. Smoothing Splines

Example: Wage (ISLR2)
Training data = 1000

Cubic spline

Natural cubic spline

Smoothing spline
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Cubic vs. Natural vs. Smoothing Splines

Criterion

Flexibility
Boundary Behavior
Noise Handling
Interpretability
Knot Selection
Computation Fast Fast

Polynomial Splines
High with more knots
May behave erratically
Poor, sensitive to noise

Natural Splines
Moderate

Smoothing Splines

High, controlled by A

Smooth, but depends on 4

Excellent, balances fit and smoothness
Moderate, influenced by 4

Not required

Slower for large data

Linear at boundaries
Moderate

Good

User-defined

Good for low degree
User-defined

Generalized Additive Models (GAMs)

GAM models a response as the sum of smooth,
flexible functions of each predictor
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Generalized Additive Models (GAMs)

GAMs provide a general framework for extending a standard linear model:
allowing non-linear functions of each of the variables, while maintaining additivity

Y = [y +HX) + LX) +/XG) + - +£,(X,) + €

each linear component ﬂJXJ can be replaced by smooth non-linear function];(Xj)

For example, a GAM may include
e non-linear polynomial method for continuous predictors
¢ step functions which are more appropriate for categorical predictors
e linear models if that seems more appropriate for some predictors

Generalized Additive Models (GAMs)

General model:

Yi =f(.xl’1, ...,Xl-,p) + 81

Examples:
o fx], X0, X3) = X 4 X7+ X + X5 4 X1, + sin®(x3)
o flx;,x) =7+ e 4 log(2x,)
o f(x1, %5, 3) = 1 +10g(0.5x%) — x, + x5
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Generalized Additive Models (GAMs)
Example: Wage (ISLR2)
the first two functions are natural splines in year and age

the third function is a step function, fit to the qualitative variable education
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Generalized Additive Models (GAMs)

+ Very flexible in choosing non-linear models and generalizable to different types
of responses.

+ Because of the additivity we can still interpret the contribution of each predictor
while considering the other predictors fixed.

+ GAMs can outperform linear models in terms of prediction.
+ Built on the framework of GLMs, so can handle different response distributions

- Additivity is convenient but it is also one of the main limitations of GAMs
(independent contributions of predictors)

- Spline fitting and penalization can be computationally intensive for large data.
- GAMs might miss non-linear interactions among predictors.
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Median Property Value

Median Property Value

This Week’s Practical

Hands on modeling non-linearity

Linear Spline Quadratic Spline. Cubic Spline
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