
Termeh Shafie

“Non-linear” Linear Regression
Lecture 8
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Recall: Feature Engineering

X1 X2 X3 X4 X1 X2 X3 Xp⋯

when do we do this and why?
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Basis Function

Y = β0 + β1 f(X1) + +β2 f(X2) + β3 f(X3) + ⋯ + βk f(Xk) + ϵ

A family of functions/transformations that can be applied to a variable : X f(X1), f(X2), f(X3), …
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Polynomial Regression Models
Polynomial regression fits a nonlinear relationship by modeling 
the response as a polynomial function of the predictor
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The Assumption of Linearity
in reality the relationships between predictors and the response  

are almost never exactly (first order) linear…
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Polynomial Regression Models

Y = β0 + β1X + ϵ
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Polynomial Regression Models

Y = β0 + β1X + β2X2 + ϵ
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Polynomial Regression Models

Y = β0 + β1X + β2X2 + β3X3 + ϵ
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Polynomial Regression Models

Y = β0 + β1X+β2X2 + β3X3 + ⋯⋯ + β20X20 + ϵ
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Polynomial Regression Models
in general, polynomial models are of the form 

 
where  is called the degree of the polynomial 

• non-linear relationship between predictors and response captured by polynomial 
terms but model remains linear in the parameters 

• example: model can be written as 
 

     where  

• we can use LS for estimation

Y = β0 + β1X+β2X2 + β3X3 + ⋯⋯ + βnXn + ϵ
d

Y = β0 + β1X1+β2X2 + β3X3 + ϵ
X1 = X, X2 = X2, X3 = X3
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Polynomial Regression Models: Choosing d
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Polynomial Regression Models
Example: Wage (ISLR2)

95% confidence interval for the mean prediction at : 
  where  is the standard error of the mean prediction at  

x
̂f(x) ± 2 × SE[ ̂f(x)] SE[ ̂f(x)] x
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Polynomial Regression Models
Example: Wage (ISLR2)

95% conf
  where  is the standard error of the mean prediction at  

x
̂f(x) ± 2 × SE[ ̂f(x)] SE[ ̂f(x)] x

higher-degree polynomials wiggle more 
and become unstable at the ends
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Polynomial Regression Models
Example: Wage (ISLR2)

ANOVA 
sequential comparisons based on the F-test 
For each step: 

If hypothesis is rejected we move on to next comparison

H0 : The decrease in RSS from adding the new polynomial term is not significant.
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Step Functions
A step function models the predictor by dividing its range into 
intervals and assigning a constant fitted value within each interval
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Step Functions
Y = β0 + β1C1(X)+β2C2(X) + ⋯ + βKCK(X) + ϵ

X C1 C2 C3 Cp⋯
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Step Functions

C0(X) = I(X ≤ c1)
C1(X) = I(c1 < X < c2)
⋮

CK−1(X) = I(cK−1 < X < cK)
CK(X)    = I(cK < X)

where  is an indicator functionI( ⋅ )

Y = β0 + β1C1(X)+β2C2(X) + ⋯ + βKCK(X) + ϵ

17

Step Functions

C0(X) = I(X ≤ c1)
C1(X) = I(c1 < X < c2)
⋮

CK−1(X) = I(cK−1 < X < cK)
CK(X)    = I(cK < X)

where  is an indicator functionI( ⋅ )

Y = β0 + β1C1(X)+β2C2(X) + ⋯ + βKCK(X) + ϵ

choosing K: 
1. Fit models with K = 1, 2, …, K_max intervals 
2. Compute test error or cross-validation error 
3. Choose K that minimizes (or is near-minimum) error
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Example: Wage (ISLR2)

Step Functions
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Example: Wage (ISLR2)

Step Functions

As you increase the number of cut-points, a step function: 
‣ Becomes more flexible, fitting more of the pattern 
‣ Reduces bias, because it approximates the trend better 
‣ Increases variance, because each interval uses fewer data points
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Regression Splines
a spline is a piecewise function 
where each segment is a polynomial 
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Regression Splines
The basis of regression splines is piecewise polynomial regression 

• Standard polynomial regression 

 

• Piecewise polynomial regression: 

 

• The  is called a knot 

• When there is no knot we have standard polynomial regression. 

• When we include only the intercepts terms, we have step function regression. 

• If we have  knots we are fitting  polynomial models

Y = β0 + β1X+β2X2 + β3X3 + ⋯⋯ + βnXn + ϵ

Y = {
β01 + β11X + β21X2 + β31X3 + ⋯ + βd1Xd + ϵ  if X < c
β02 + β12X + β22X2 + β32X3 + ⋯ + βd2Xd + ϵ  if X ≥ c

c

K K + 1
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Regression Splines
Example: Wage (ISLR2) 
Piecewise cubic polynomial with a single knot placed a age = 50: 

wage = {
f1(age) = β01 + β11X + β21X2 + β31X3  if age < 50
f2(age) = β02 + β12X + β22X2 + β32X3  if age ≥ 50
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Regression Splines
Example: Wage (ISLR2) 
Piecewise cubic polynomial with a single knot placed a age = 50. Constraints: 

1.  f1(age = 50) = f2(age = 50)
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Example: Wage (ISLR2) 
Piecewise cubic polynomial with a single knot placed a age = 50. Constraints: 

1.   

2.  

3.

f1(age = 50) = f2(age = 50)
f′￼1(age = 50) = f′￼2(age = 50)
f′￼′￼1(age = 50) = f′￼′￼2(age = 50)

Regression Splines
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splines are meant to be continuous 
and have continuous derivatives!
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Example: Wage (ISLR2) 
Regression Splines
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Constraints and Degrees of Freedom 

• In the previous example, we started with a cubic piecewise polynomial with 8 
unconstrained parameters, so we started with 8 degrees of freedom (df) 

• We initially imposed one constraint, which restricted one parameter, so we lost a 
degree of freedom  

• With the further two constraints:  df 

• In general, a cubic spline with   knots has  degrees of freedom. In R we can 
we can specify either the number of knots or just the degrees of freedom. 

A degree-  regression spline is a piecewise degree-  polynomial  
with continuity in derivatives up to degree  at each knot

8 − 1 = 7

8 − 3 = 5

K 4 + K

d d
d − 1

Regression Splines
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Natural Splines
• Regression splines have high variance at the outer range of the predictor (the tails) 
• The confidence intervals at the tails can be wiggly (especially for small samples) 

Natural splines are extensions of regression splines which remedy these problems  

Two additional constraints at each boundary region: 
1. The spline function is constrained to be close to linear when   smallest knot 
2. The spline function is constrained to be close to linear when largest knot

X <
X >

28



How Many Knots?
• Provided there is evidence from the data we can do it empirically: 

‣ Place knots where it is clearly obvious there is a distributional shift in direction 

‣ Place more knots on regions where we see more variability 

‣ Place fewer knots in places which look more stable 

• Alternatively, we can place knots in a uniform fashion (25th, 50th, 75th percentiles)
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Smoothing Splines
a smoothing spline is a non parametric approach 
designed to balance fit with smoothness
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Smoothing Splines
• Unlike regression splines and natural splines, there are no knots!  

• The discrete problem of selecting a number of knots into a continuous penalization problem 

• We seek a function   among all possible functions (linear + non-linear) which minimizes 

model fit  roughness penalty term    

• The function   that minimizes the above quantity is called a smoothing spline 

•  is the tuning penalty parameter, also called roughness penalty 

‣ when  we get an extremely wiggly non-linear function   (completely useless) 

‣ as  increases, the function becomes smoother 

‣ theoretically: when ,  is zero everywhere    i.e. linear model 

• A smoothing spline is the natural cubic spline whose knots are at all the data points 

g

+ =
n

∑
i=1

(yi − g(xi))2 + λ∫ (g′￼′￼(t))2dt

g
λ ≥ 0

λ = 0 g
λ

λ → ∞ g′￼′￼ ⟹ g(X) = β0 + β2X

x1, x2, x3, …, xn

         catches non-linearities⏟⏟model fit term
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Cubic vs. Natural vs. Smoothing Splines
Example: Wage (ISLR2) 

Training data = 50
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Cubic vs. Natural vs. Smoothing Splines
Example: Wage (ISLR2) 

Training data = 200
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Cubic vs. Natural vs. Smoothing Splines
Example: Wage (ISLR2) 

Training data = 1000
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Cubic vs. Natural vs. Smoothing Splines

Criterion Polynomial Splines Natural Splines Smoothing Splines
Flexibility High with more knots Moderate High, controlled by 
Boundary Behavior May behave erratically Linear at boundaries Smooth, but depends on  
Noise Handling Poor, sensitive to noise Moderate Excellent, balances fit and smoothness
Interpretability Good for low degree Good Moderate, influenced by  
Knot Selection User-defined User-defined Not required
Computation Fast Fast Slower for large data

λ
λ

λ
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Generalized Additive Models (GAMs)

GAM models a response as the sum of smooth, 
flexible functions of each predictor
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Generalized Additive Models (GAMs)

Y = β0 + f1(X1) + f2(X2) + f3(X3) + ⋯ + fp(Xp) + ϵ

GAMs provide a general framework for extending a standard linear model: 
allowing non-linear functions of each of the variables, while maintaining additivity  

each linear component   can be replaced by smooth non-linear function βjXj fj(Xj)

For example, a GAM may include 

• non-linear polynomial method for continuous predictors 
• step functions which are more appropriate for categorical predictors 
• linear models if that seems more appropriate for some predictors

37

Generalized Additive Models (GAMs)

Yi = f(xi,1, …, xi,p) + εi

General model: 

Examples: 

•  

•  

•

f(x1, x2, x3) = x1 + x2
1 + x2 + x2

2 + x1x2 + sin2(x3)
f(x1, x2) = π + e5x1 + log(2x2)
f(x1, x2, x3) = 1 + log(0.5x2

1) − x2 + x3
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Generalized Additive Models (GAMs)
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Example: Wage (ISLR2) 
the first two functions are natural splines in year and age  
the third function is a step function, fit to the qualitative variable education 
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+ Very flexible in choosing non-linear models and generalizable to different types 
of responses. 

+ Because of the additivity we can still interpret the contribution of each predictor 
while considering the other predictors fixed. 

+ GAMs can outperform linear models in terms of prediction. 
+ Built on the framework of GLMs, so can handle different response distributions

Generalized Additive Models (GAMs)

- Additivity is convenient but it is also one of the main limitations of GAMs 
(independent contributions of predictors) 

- Spline fitting and penalization can be computationally intensive for large data. 

- GAMs might miss non-linear interactions among predictors. 

40



Hands on modeling non-linearity
This Week’s Practical
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