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The Vocabulary

depth of tree
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BIRD NOT BIRD

CAN FLY?

YES NO

?

Data Type: Categorical
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Data Type: Categorical

11

TIK TOK USER NOT TIK TOK USER

AGE < 20?

YES NO

Data Type: Continuous
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Classification and Regression Trees (CART)
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Tree-Based Classification
nonparametric algorithms partitioning the feature space into a number of smaller    

(non-overlapping) regions with similar response values using a set of splitting rules 

example: classification tree based on two predictors
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Classification and Regression Trees
1. Start with an empty decision tree (undivided feature space)  
2. Choose the ‘optimal’ predictor on which to split, 
3. choose the ‘optimal’ threshold value for splitting by applying a splitting criterion  
4. Recurse on each new node until stopping condition is met  

Splitting Criteria 

Gini Index:      

Entropy:      

Goal: split where GI or H is minimzed

GI = 1 −
n

∑
i=1

p2
i

H = −
n

∑
i

pi log(pi)
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          Example
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GI = 1 −
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∑
i=1

p2
i
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          Example
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0 1
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cats house ho children income

1 0 1 1 34

0 1 0 1 58.3

1 1 1 0 71.5

0 0 0 1 74.9

0 0 0 1 75.3

1 0 0 1 75.6

0 0 0 1 81

1 1 1 0 82.3

1 1 1 0 85.6

1 1 1 1 95.4

          Example

0 1

0.4 0.16 0.3430.343 GI = 1 −
n

∑
i=1

p2
i
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Review: Basic Steps
1. Compute Gini index or Entropy as measure of impurity for each node 
2. Choose node with lowest score 
3. If the parent node has the lowest score, it is a leaf 
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Variable Importance Measure: Gini Importance
1. How much does this feature reduce node impurity?  
  

node-impoj = wjCj − ( wleftj
Cleftj

+ wright
j
Cright

j )
⏟

weighted parent node impurity

weighted child node impurity
⏟importance of node j

fij =
∑j∈Si

node-impoj

∑k∈Sall
node-impok

 where  is set of all nodes that split on featureSi i

feature importance (fi): 
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Variable Importance Measure: Permutations
2. How much does reshuffling of a variable reduce model performance? 

cats ho
1 1
0 0
1 1
0 0
0 0
1 0
0 0
1 1
1 1
1 1

The larger the discrepancy between baseline model predictions and 
reshuffled model predictions, the more important is that feature
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Regression Trees
when what we wish to predict is continuous instead of categorical

CAN FLY?

YES NO

BIRD NOT BIRD
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Regression Trees
when what we wish to predict is continuous instead of categorical

for every data point that ends up in a leaf, we predict its value is 
the mean of all values that ended up in that node when training

CAN FLY?

YES NO

WEIGHT WEIGHT
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Regression Trees
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Regression Trees
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Regression Trees
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Regression Trees
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Regression Trees
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Regression Trees
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Regression Trees
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Regression Trees
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Y = 0 Y = 13
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Regression Trees
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Regression Trees
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Regression Trees
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• For classification, purity of the regions is a good indicator the performance of the 
model 

• For regression, we want to select a splitting criterion that promotes splits that 
improves the predictive accuracy of the model as measured by e.g. the MSE (or 
RSS as the previous example)

Regression Trees

1. start with an empty decision tree 

2. choose a predictor on which to split and choose a threshold for splitting such 
that the weighted average MSE of the new region is as small as possible 

3. Recurse on each node until stopping condition is met 

‣ maximum depth 

‣ minimum number of points in region 

instead of purity gain, we instead compute accuracy gain
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Regression Trees
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Regression Trees
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Motivation for Pruning
validation error

training error

complexity

er
ro

r high bias high variance

Full Tree

Early  
Stopping

Simple Tree

PRUNING
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Cost Complexity Pruning
• we can obtain a simpler tree by ‘pruning’ a complex one 

• we select from an array of smaller subtrees of the full model that optimizes a 
balance of performance and efficiency 

 

where  is a decision subtree 

 is the number of leaves in the tree 

 penalizes model complexity

C(T) = Error(T) + α |T |
T

|T |
α

1. Fix  
2. Find best tree for a given  and based on complexity  
3. Find the best using CV and error measure

α
α C
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Regression Trees
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Regression Trees: Pruning

versus versus versus

compare using 
C(T) = Error(T) + α |T |
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Example: Hitters (ISLR2) 

Regression Trees: Pruning

|
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Decision Trees

+ Decision trees models are highly interpretable and fast to train 

- In order to capture a complex decision boundary we need a large trees: 
have high variance and prone to overfitting  
often underperform compared to other classification/regression methods 
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Random Forests

Ensemble method comprising: 
• Bagging 
• Random Feature Selection
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Bagging (Bootstrap Aggregating)
• Bootstrap: 

generate multiple samples of training data via bootstrapping 
train a full decision tree on each sample of data 

• Aggregate: 
given an input, we output the averaged outputs of all the models for that input 

• Works with the rows of the data

1
2
3
4
5
6
7
8
9
10
11
12

data bootstrapped sample

random sampling 
with replacement
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Random Feature Selection
• Just like bagging but 

works with the columns of the data 
without replacement 

• Every tree will have slightly different predictors

data feature selected sample
random sampling 

without replacement
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Random Forest
• Benefits 

+ By using full trees, each model is able to approximate complex function and 
decision boundaries 

+ By averaging the predictions of all models reduces the variance in the final 
prediction (given sufficiently large number of trees) 

• Drawback 
- the averaged model is no longer easily interpretable - we can no longer trace 

the ‘logic’ of an output through a series of decisions based on predictor values
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• Random forest models have multiple hyper-parameters to tune  
the number of predictors to randomly select at each split  
the total number of trees in the ensemble  
the minimum leaf node size 

• Generally tuned through cross validation (  data and problem dependent)  
• Use out-of-bag errors to evaluate model’s predictive accuracy 

cease training once the out-of-bag error stabilizes  
if sample large enough, estimate is approximately LOO-CV error for bagging 

• When the number of predictors is large, but the number of relevant predictors is 
small, random forests can perform poorly 

• Increasing number of trees in ensemble does not increase risk of overfitting 
but the trees in the ensemble may become more correlated, increase the variance.

⟹

Tuning the Random Forest
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Out-Of-Bag Errors (OOB Errors)

0 1

0 1

0 1

0
1 0

0 1

0

1

10

0 1

data bootstrapped samples decision trees unused data (OOB)

bag 1

bag 2

bag 3

point-wise OOB error over 
full training set: 

• classification  majority 
• regression  average

→
→
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Boosting Trees

53

The trees are grown sequentially:  
• Each tree is grown using information from previously grown trees 
• The boosting approach learns slowly, thus avoiding overfitting

Boosting Trees

+ + + +…

correct errors made by all previous trees
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The trees are grown sequentially:  
• Each tree is grown using information from previously grown trees 
• The boosting approach learns slowly, thus avoiding overfitting

Boosting Trees

+ + + +…

correct errors made by all previous trees

correct error 
made by
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The trees are grown sequentially:  
• Each tree is grown using information from previously grown trees 
• The boosting approach learns slowly, thus avoiding overfitting

Boosting Trees

+ + + +…

correct errors made by all previous trees

correct error 
made by
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The trees are grown sequentially:  
• Each tree is grown using information from previously grown trees 
• The boosting approach learns slowly, thus avoiding overfitting

Boosting Trees

+ + + +…

correct errors made by all previous trees

correct error 
made by
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Example
age initial guess residual

obs 1 21 22 -1

obs 2 22 22 0

obs 3 23 22 1

obs 4 22 22 0

obs 5 21 22 -1

actual value  = predicted + residual

what if we had a tree that could predict the residuals made by the initial model? 

 gradient boosting tree! 
instead of fitting a bunch of independent trees,  
we incrementally improve on our initial guess

⟹

+ + + +…
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Example
age initial guess residual

obs 1 21 22 -1

obs 2 22 22 0

obs 3 23 22 1

obs 4 22 22 0

obs 5 21 22 -1

actual value  = predicted + residual

what if we had a tree that could predict the residuals made by the initial model? 

 gradient boosting tree! 
instead of fitting a bunch of independent trees,  
we incrementally improve on our initial guess

⟹

+ + + +…
0.01 0.01 0.01 0.01
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Gradient Boosting Trees
Intuitively: 

• Gradient boosting is a method for iteratively building a complex model  by 
adding simple models.  

• Each new simple model added to the ensemble compensates for the weaknesses 
of the current ensemble: 
‣ each simple model  we add to our ensemble model , models the errors of  
‣ Thus, with each addition of , the residual is reduced

T

T(i) T T
T(i)
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Gradient Boosting Trees
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Gradient Boosting Trees
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Gradient Boosting Trees
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Gradient Boosting Trees
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Gradient Boosting Trees
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Gradient Boosting Trees: The Algorithm
1. Fit a simple model  on the training data  

Set  and compute residuals  fort  

2. Fit a simple model  to the current residuals, i.e. train using  

3. Set   where  is the learning rate (usually 0.01 or 0.001) 

4. Compute residuals, set  
5. Repeat steps 2-4 until stopping condition is met

T(0) {(x1, y1), …, (xN, yN)}
T ← T(0) {r1, …, rN} T

T(1) {(x1, r1), …, (xN, rN)}
T ← T + λT(1) λ

rn ← rn − λT(i)(xn), n = 1,…, N
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Gradient Boosting Trees: The Math

+ + + +…
0.01 0.01 0.01 0.01

z0 + 0.01z1 + 0.01z2 + ⋯ + 0.01zn
baseline prediction how do we choose these errors to correct?

⋮

future trees predict error for a regression tree given defined loss function 

let  be our predictions Fi Fi =
i

∑
t=0

zt
F1 = z0 + z1
F2 = z0 + z1 + z3

Fi = Fi−1 + zi
zi = −

∂Loss(y, Fi)
∂Fi
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Gradient Boosting Trees: The Math

+ + + +…
0.01 0.01 0.01 0.01

z0 + 0.01z1 + 0.01z2 + ⋯ + 0.01zn
At iteration : 

• You already have a model  

• You want to add a new tree so that loss decreases 

So you update:   
To reduce loss,   should point in direction of steepest decrease of the loss: 

      That’s exactly the negative gradient.

i
Fi−1(x)

zi(x)
Fi(x) = Fi−1(x) + zi(x)
zi(x)

zi(x) = −
∂Loss(y, Fi−1(x))

∂Fi−1(x)
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Gradient Boosting Trees: The Math

zi = −
∂Loss(y, Fi)

∂Fi
Negative Gradient of Loss w.r.t. Ensemble Prediction  

• The Negative Gradient tell us what adjustments we should make to our prediction  in 
order to decrease our loss 

• Example:  

 

• With squared loss, error is the negative gradient, but the negative gradient will work 
in other situations!

Fi

Loss(y, ̂y) = (y − ̂y)2 ⟹ −
∂Loss(y, ̂y)

∂ ̂y
⟹ 2(y − ̂y)
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Choosing a Learning Rate: Convexity
• Under ideal conditions, gradient descent iteratively approximates and converges to 

the optimum 
• For a constant learning rate  
‣ if  is too small, it takes too many iterations to reach the optimum 

‣ if  is too large, algorithm may ‘bounce’ around the optimum and never get close 

‣ Better to treat learning rate as a variable, that is let the value depend on gradient 
‣ around optimum  is small, and far from optimum  is larger

λ
λ
λ

λ λ
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This Week’s Practical
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