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The Vocabulary The Vocabulary

Branches / \Bmhes pamn/ \

The Vocabulary The Vocabulary

Child / \ child / \eaf
o d/ \ child Leaf/\ Leaf size of tree




The Vocabulary Data Type: Categorical

CAN FLY?

BIRD NOT BIRD
depth of tree ?
! |
9 10

Data Type: Categorical Data Type: Continuous

CAN FLY? AGE < 207

BIRD FEATHERS? TIK TOK USER NOT TIK TOK USER
YES NO

BIRD NOT BIRD
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Tree-Based Classification

nonparametric algorithms partitioning the feature space into a number of smaller
(non-overlapping) regions with similar response values using a set of splitting rules

example: classification tree based on two predictors

1.00-

Classification and Regression Trees (CART) .
. A
0.00= ...-.\'i\.;. '.5"1" ::
13 14
Classification and Regression Trees hExample .
_1_ 2
1. Start with an empty decision tree (undivided feature space) " o p Gl=1 Z[?,-
i i i=1
2. Choose the ‘optimal’ predictor on which to split, catshouse| ho |chileren income
3. choose the ‘optimal’ threshold value for splitting by applying a splitting criterion 1 0 1 L 34 0 1
4. Recurse on each new node until stopping condition is met 0 ! 0 ! 583
Gini Impurity vs. Entropy in 2-Class Case 1 1 1 0 7.5
Splitting Criteria 0| 010 1 74.9
P ° L o| o |o 1 75.3 Y| ¥ v v
- i —1- Z 2 :
GiniIndex: Gl = D; . ] o 1o ; 156
i=1 2 Source
e ! %uso = Gini impurity 0 0 0 1 81
Entropy: H=— Z p;log(p;) 5 1 1 1 0 82.3
i 11 |1 0 856
Goal: split where Gl or H is minimzed 1 1 1 1 95.4

025 050 075
Probability of Positive Class
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JPCExample

Gl=1- ipiz
i=1

hExample

Gl=1- ﬁ:pf
i=1

cats| house| ho |children income howeoffice (hO) cats| house| ho |children|income Chi'dl’e“

1 0] 1 1 34 1 0 1 1 34

0 1 0 1 58.3 0 1 0 1 58.3

1 1 1 0] 7.5 1 1 1 0] 71.5

0 0 0 1 74.9 \‘ 0 0 0 1 74.9

0 0] 0] 1 75.3 J \‘ 0 6] 6] 1 75.3 \‘

1 0 0 1 75.6 1 0 0 1 75.6

0 0 0 1 81 0 0 0 1 81

1 1 1 0 82.3 1 1 1 0 82.3

1 1 1 0 85.6 1 1 1 0 85.6

1 1 1 1 95.4 1 1 1 1 95.4
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W Example ,1 W Example ,1
Gl=1-)p? - Gl=1-)p? -

cats| house| ho |children income i=1 imcowme cats| house| ho |children|income i=1 imcome

1 6] 1 1 34 1 6] 1 1 34 0.44

0 1 0 1 58.3 0 1 0 1 58.3 m

1 1 1 0 7.5 1 1 1 (0] 7.5 m

0 0 0 1 74.9 J 0 0 0 1 74.9 407

0 0 0 1 75.3 J J 0 0 0 1 75.3 43 \‘

110 |o 1 756 110 |o 1 e |

0 0 0 1 81 0 0 0 1 81 m

1 1 1 0 82.3 1 1 1 0 82.3 407

1 1 1 0 85.6 1 1 1 0 85.6 40.:

1 1 1 1 95.4 1 1 1 1 95.4 —~
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W Example

i

0.4 0.6 0.343 0343 Gl=1- ) p?

cats| house| ho |children|income i=1

0 1 34

58.3

7.5

74.9 J J J \‘

75.3

75.6

81

82.3

0 1
1 1
0 0
0 0
1 0
0 0
1 1
1 1

- = O O 0O 0= O -

85.6

- 0 0 = = 2 a0 =

1 1 95.4

-

Review: Basic Steps

1. Compute Gini index or Entropy as measure of impurity for each node
2. Choose node with lowest score
3. If the parent node has the lowest score, it is a |leaf

N
O

21

Variable Importance Measure: Gini Importance
1. How much does this feature reduce node impurity?

weighted parent node impurity
——

node-impo, = w,C; — ( Wiefy Cleft, * WrightCright.)
R J J J
importance of node j

weighted child node impurity

feature importance (fi):
s, node-impo,

ﬁ,'_

=Y node-impo where §; is set of all nodes that split on feature;
k€S, k

Variable Importance Measure: Permutations
2. How much does reshuffling of a variable reduce model performance? H

cats | ho

The larger the discrepancy between baseline model predictions and 1

reshuffled model predictions, the more important is that feature

. 2 s 00 0 =0
- = 2 OO0 00 = 0O -
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Regression Trees

when what we wish

to predict is continuous instead of categorical

Regression Trees

when what we wish

to predict is continuous instead of categorical

CAN FLY? CAN FLY?
BIRD NOT BIRD WEIGHT WEIGHT
for every data point that ends up in a leaf, we predict its value is
the mean of all values that ended up in that node when training
25 26
Regression Trees Regression Trees X <3
Y Y
100 Goee © / \ 100 - s O / \
901 90+ ! — =
80+ 80+ : Y=0 Y~ 30
701 L 701 %
601 e 601 @
® ! @
501 50 .
40+ 404 ¢
30 RSS 07T RSS
201 20
10+ e ° 10 © °
" : : —00® 00 a0 ; ; 00®
10 20 30 40 50 X threshold 10 20 30 40 50 X threshold
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Regression Trees X<7 Regression Trees
Y Y
1004 - Qoo O / \ 100t : om0 ® / \
0 — = %01
801 ! Y=0 Y~ 36 801
01 0+
60—+ . @ 60+ ' (}
: ® : ®
0T ° 07T & [and so forth.| ° ."‘0.’,.
40+ ° 0+ e o
4 . 4 : .0...
01 RSS 30 ] RSS
201 20+
o+ o ° o o+ 1 ° o
|© © DOe } } } } mx |© © ODe } } } } Lx
10 20 30 40 50 X threshold 10 20 30 40 50 X threshold
29 30
Regression Trees X < 15 Regression Trees X < 15
Y Y
1004 : Qo O / \ 100 : oo © / \
90—+ 90—+
80 80+
70+ % 70+ T
60+ o 60+ ®
0T : 0%8y 50T °
401 .0. ¢ .Vl. 40T P
304 RSS .’. 304 now continue with next branch \
20+ : 20+
101 @ ° 101 @ °
" : : 00 v : LYY ¥ ; ; 00®
10 20 30 40 50 X threshold 10 20 30 40 50
31 32




Regression Trees X< 15 Regression Trees X < 15
Y Y
100+ , G8Eee ® / \ 100d- . oo o / \
901 901 :
80+ ! E X< 10 30+ E X< 10
70+ P LA N 70+ L NN
0 % 7=0| F=13 60 : % 7=0| [F=13
501 leaf 50T : | this is not optimal]
401 LN 401 5 e
30+ 30+ :
RSS - RSS

20+ . s‘. 20+ o \.
10 P ° : 10T P ° :

@ © o0, . : —o0® | v : eoece; & | . 00 | v :

100 20 30 40 50 X threshold 100 20 30 40 50 X threshold
33 34
Regression Trees X < 15 Regression Trees X < 15
Y Y

1004 : a0 / \ 1004 : nnn ® / \
904 — 901 —
80+ Y~25 80+ : Y~25
70+ : ) leaf 70T | and so forth....’ leaf
T % T \.and so forth.. |
507 set minimum number of observations to 7 50T !
204 204 | and so forth.. |
30+ 30+ :
20+ 20+ :
10 ¢ o 10+ ¢ o

S ; 008 coese, & ; o0

10 20 30 40 50 10 20 30 40 50




Regression Trees Regression Trees
Y X<15
100+ —ceseean ’ o For classification, purity of the regions is a good indicator the performance of the
90+ : : : model
s04 : : — o For regression, we want to select a splitting criterion that promotes splits that
] i Y~25 X 2> 40 improves the predictive accuracy of the model as measured by e.g. the MSE (or
70+ i i ‘ : TO_ RSS as the previous example)
60+ ! i—'—: — X > 30 1. start with an empty decision tree
50+ E E — E (200 — 2. choose a predictor on which to split and choose a threshold for splitting such
40 i ] : AN that the weighted average MSE of the new region is as small as possible
30 ] i i Y~ 60 | [Y=100 3. Recurse on each node until stopping condition is met
1 1 i » maximum depth
20T 1 1 H » minimum number of points in region
. . . L) L] n
oee0e— [ —eees— instead of purity gain, we instead compute accuracy gain
10 20 30 40 50
37 38

Regression Trees Regression Trees
Regression Tree (Depth 1) Regression Tree (Depth 3) Y
. 100 r—aseee-6—, ;
901+ :
801 5 E ;
07 5 'Y
60+ : 00 T—e—
: . o
07 : o %
401 o : :
30+ : ] L P .
20+ o o 5 5 E @ testing data
10T ° ‘e
10 20 30 40 50
39 40




Motivation for Pruning

error

validation errvor

high bias high variance

Simple Tree Early
: Stopping

{ PRUNING

complexity

Cost Complexity Pruning

e we can obtain a simpler tree by ‘pruning’ a complex one

« we select from an array of smaller subtrees of the full model that optimizes a
balance of performance and efficiency

C(T) = Error(T) + a| T|

where T is a decision subtree
| T| is the number of leaves in the tree

a penalizes model complexity

1. Fixa

2. Find best tree for a given a and based on complexity C
3. Find the best using CV and error measure

41 42
Regression Trees PR Regression Trees: Pruning
Y
1001 —aaees-6— '
90 compare using
80T Y~25 X > 40 C(T) = Error(T) + a| T|
0T : A <
601 i EI '. i 7~20!| x> 30 R versus R versus R versus 1
] 5 P N 1 ] 55 1 .
il s L 7~e0 |[7= 100
30T : : :
207 : : :
0T ° ‘e
ooete— : =
10 20 30 40 50
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Regression Trees: Pruning Decision Trees

Example: Hitters (ISLR2) + Decision trees models are highly interpretable and fast to train

- — Training
—— Cross-Validation Years,< 4.5

o - In order to capture a complex decision boundary we need a large trees:

o have high variance and prone to overfitting
o often underperform compared to other classification/regression methods

Mean Squared Error
0.4
|
|
| ‘
|
/ I
* ¢ *
“ ‘
H—H—O—(‘ —e—

Hits <[117.5
5.11

T T T T T 6.00 6.74

Tree Size

Bagging (Bootstrap Aggregating)

e Bootstrap:

o generate multiple samples of training data via bootstrapping

o train a full decision tree on each sample of data
e Aggregate:

o given an input, we output the averaged outputs of all the models for that input
e Works with the rows of the data

Rahdom FOI‘eStS data bootstrapped sample

randowm sampling
with replacement

Ensemble method comprising:

* Bagging
* Random Feature Selection

VCRANINETWN =

823

2%
B m—) Q:Q:’
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Random Feature Selection
o Just like bagging but

o works with the columns of the data
o without replacement

e Every tree will have slightly different predictors

Random Forest

¢ Benefits
+ By using full trees, each model is able to approximate complex function and
decision boundaries

+ By averaging the predictions of all models reduces the variance in the final
prediction (given sufficiently large number of trees)

¢ Drawback
data feature selected sample ) o
. - the averaged model is no longer easily interpretable - we can no longer trace
randow sampling the ‘logic’ of an output through a series of decisions based on predictor values
without replacemeunt
49 50

Tuning the Random Forest

Random forest models have multiple hyper-parameters to tune
o the number of predictors to randomly select at each split

o the total number of trees in the ensemble

o the minimum leaf node size

Generally tuned through cross validation (= data and problem dependent)

Use out-of-bag errors to evaluate model’s predictive accuracy
o cease training once the out-of-bag error stabilizes
o if sample large enough, estimate is approximately LOO-CV error for bagging

When the number of predictors is large, but the number of relevant predictors is
small, random forests can perform poorly

Increasing number of trees in ensemble does not increase risk of overfitting

o but the trees in the ensemble may become more correlated, increase the variance.

Out-Of-Bag Errors (OOB Errors)

data bootstrapped samples decision trees vuused data (00B)

bag 1 w
E 0] 1 (0] 1

point-wise 00B error over
full training set:

« classification — majority
« regression — average

51




Boosting Trees

Boosting Trees

The trees are grown sequentially:
e Each tree is grown using information from previously grown trees
e The boosting approach learns slowly, thus avoiding overfitting

correct errors made by all previous trees

+ + + e +

53
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Boosting Trees

The trees are grown sequentially:
e Each tree is grown using information from previously grown trees
e The boosting approach learns slowly, thus avoiding overfitting

correct errors made by all previous trees

+ + + e+
\ correct error

wmade by

Boosting Trees

The trees are grown sequentially:
e Each tree is grown using information from previously grown trees
e The boosting approach learns slowly, thus avoiding overfitting

correct errors made by all previous trees

+ + + e+
‘\ correct error

wmade by
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Boosting Trees

The trees are grown sequentially:
e Each tree is grown using information from previously grown trees
e The boosting approach learns slowly, thus avoiding overfitting

correct errors made by all previous trees

- 8- Q‘

\ correct error
wmade by

Example
age initial guess| residual
obs 1 21 22 -1 actual value = predicted +
obs 2 22 22 0]
obs 3 23 22 1
obs 4 22 22 0
obs 5 21 22 -1

what if we had a tree that could predict the residuals made by the initial model?

= gradient boosting tree!
instead of fitting a bunch of independent trees,
we incrementally improve on our initial guess

8 88 -

57
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Example
age initial guess| residual
obs 1 21 22 1 actual value = predicted +
obs 2 22 22 (0]
obs 3 23 22 1
obs 4 22 22 [0]
obs 5 21 22 -1

what if we had a tree that could predict the residuals made by the initial model?

= gradient boosting tree!
instead of fitting a bunch of independent trees,
we incrementally improve on our initial guess

s .8 8
0.01 0.01 0.01 0.01

Gradient Boosting Trees

Intuitively:
e Gradient boosting is a method for iteratively building a complex model T by
adding simple models.
e Each new simple model added to the ensemble compensates for the weaknesses
of the current ensemble:

» each simple model T® we add to our ensemble model T, models the errors of T
» Thus, with each addition of 7@, the residual is reduced

59
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Gradient Boosting Trees

Original Data and First Tree Fit

Gradient Boosting Trees

Residuals After First Tree

61
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Gradient Boosting Trees

Fitted Residuals and Second Tree Predictions

Gradient Boosting Trees

Updated Predictions After Second Tree

63

64




Gradient Boosting Trees

Residuals After Second Tree

Gradient Boosting Trees: The Algorithm

Fit a simple model T on the training data HETTR ) N C VD)
Set T « T© and compute residuals {ry,...,ry} fort T

—_

Fit a simple model T to the current residuals, i.e. train using {7y, e, Gos 1) )
Set T« T+ AT™D where 1 is the learning rate (usually 0.01 or 0.001)
Compute residuals, set 7, < r, — ATO(x,), n = 1,...,N

Repeat steps 2-4 until stopping condition is met

QRN

65

Gradient Boosting Trees: The Math

$.8.8 .8
0.01 0.01 0.01 0.01

(zg+ 0.01z )+ 0.01g ) -+ + 0.01z,)

baseline prediction how do we choose these errors to correct?

future trees predict error for a regression tree given defined loss function

let F; be our predictions F; = Z Z Fy=z0+7,+2

=0

oLoss(y, F;)

FizFi—l+@ ‘T oF,

1
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Gradient Boosting Trees: The Math

s.8.8 .8
0.01 0.01 0.01 0.01

2+ 0.01z; + 0.01z, + - + 0.01z,

At iteration i:

« You already have a model F;_,(x)
« You want to add a new tree z;(x)so that loss decreases
So you update: Fi(x) = F;_;(x) + z;(x)
To reduce loss, z;(x) should point in direction of steepest decrease of the loss:
dLoss(y, F;_,(x))

W= e

That'’s exactly the negative gradient.
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Gradient Boosting Trees: The Math

oLoss(y, I,)
oF;

Negative Gradient of Loss w.r.t. Ensemble Prediction

==

* The Negative Gradient tell us what adjustments we should make to our prediction F; in
order to decrease our loss

* Example:
0Loss(y,)

Loss(y.9) = (v -3 = % = 20-9)

* With squared loss, error is the negative gradient, but the negative gradient will work
in other situations!

Choosing a Learning Rate: Convexity

* Under ideal conditions, gradient descent iteratively approximates and converges to
the optimum

* For a constant learning rate 1
» if Ais too small, it takes too many iterations to reach the optimum
» if 1 is too large, algorithm may ‘bounce’ around the optimum and never get close

f(x) f(x)

X x

» Better to treat learning rate as a variable, that is let the value depend on gradient
» around optimum A is small, and far from optimum A is larger
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GENTOO/ ADFLIE/

This Week’s Practical * ‘ i 650"

————

Rosticion of opth o Tee

Random Forest

BAS Drive Score

BAS Fun Seeking Score
Age

8IS Score

Feature

BAS Roward Rosponsivenass. Score

. Importance (IncNodePurity)
G}lluength < 40 [Gentooj Gradiont Boosiing

BAS Fun.Seeking Score

BAS Drive.Scoro

yes

BAS Reward Responsiveness. Score

Feature

BIS.Score

Chinstrap Fomalo

20

. =
(=]

Relative Influence
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