
Termeh Shafie

 Based Methods
Lecture 9

1

The Vocabulary

2

The Vocabulary
Node

Node Node

Node Node

3

The Vocabulary
Root

4

The Vocabulary

Branches Branches

5

The Vocabulary
Parent

Parent

6

The Vocabulary

ChildChild

ChildChild

7

The Vocabulary

Leaf

Leaf Leaf size of tree

8

The Vocabulary

depth of tree

9

BIRD NOT BIRD

CAN FLY?

YES NO

?

Data Type: Categorical

10

BIRD FEATHERS?

CAN FLY?

YES NO

YES NO

BIRD NOT BIRD

Data Type: Categorical

11

TIK TOK USER NOT TIK TOK USER

AGE < 20?

YES NO

Data Type: Continuous

12

Classification and Regression Trees (CART)

13

Tree-Based Classification
nonparametric algorithms partitioning the feature space into a number of smaller

(non-overlapping) regions with similar response values using a set of splitting rules

example: classification tree based on two predictors

14

Classification and Regression Trees
1. Start with an empty decision tree (undivided feature space)
2. Choose the ‘optimal’ predictor on which to split,
3. choose the ‘optimal’ threshold value for splitting by applying a splitting criterion
4. Recurse on each new node until stopping condition is met

Splitting Criteria

Gini Index:

Entropy:

Goal: split where GI or H is minimzed

GI = 1 −
n

∑
i=1

p2
i

H = −
n

∑
i

pi log(pi)

15

 Example

0 1

cats house ho children income

1 0 1 1 34

0 1 0 1 58.3

1 1 1 0 71.5

0 0 0 1 74.9

0 0 0 1 75.3

1 0 0 1 75.6

0 0 0 1 81

1 1 1 0 82.3

1 1 1 0 85.6

1 1 1 1 95.4

GI = 1 −
n

∑
i=1

p2
i

16

 Example
homeoffice (ho)

0 1

cats house ho children income

1 0 1 1 34

0 1 0 1 58.3

1 1 1 0 71.5

0 0 0 1 74.9

0 0 0 1 75.3

1 0 0 1 75.6

0 0 0 1 81

1 1 1 0 82.3

1 1 1 0 85.6

1 1 1 1 95.4

GI = 1 −
n

∑
i=1

p2
i

17

 Example
children

0 1

cats house ho children income

1 0 1 1 34

0 1 0 1 58.3

1 1 1 0 71.5

0 0 0 1 74.9

0 0 0 1 75.3

1 0 0 1 75.6

0 0 0 1 81

1 1 1 0 82.3

1 1 1 0 85.6

1 1 1 1 95.4

GI = 1 −
n

∑
i=1

p2
i

18

 Example
income

0 1

cats house ho children income

1 0 1 1 34

0 1 0 1 58.3

1 1 1 0 71.5

0 0 0 1 74.9

0 0 0 1 75.3

1 0 0 1 75.6

0 0 0 1 81

1 1 1 0 82.3

1 1 1 0 85.6

1 1 1 1 95.4

GI = 1 −
n

∑
i=1

p2
i

19

 Example
income

0 1
0.44

0.48

0.48

0.47

0.4

0.45

0.34

0.4

0.44

cats house ho children income

1 0 1 1 34

0 1 0 1 58.3

1 1 1 0 71.5

0 0 0 1 74.9

0 0 0 1 75.3

1 0 0 1 75.6

0 0 0 1 81

1 1 1 0 82.3

1 1 1 0 85.6

1 1 1 1 95.4

GI = 1 −
n

∑
i=1

p2
i

20

cats house ho children income

1 0 1 1 34

0 1 0 1 58.3

1 1 1 0 71.5

0 0 0 1 74.9

0 0 0 1 75.3

1 0 0 1 75.6

0 0 0 1 81

1 1 1 0 82.3

1 1 1 0 85.6

1 1 1 1 95.4

 Example

0 1

0.4 0.16 0.3430.343 GI = 1 −
n

∑
i=1

p2
i

21

Review: Basic Steps
1. Compute Gini index or Entropy as measure of impurity for each node
2. Choose node with lowest score
3. If the parent node has the lowest score, it is a leaf

22

Variable Importance Measure: Gini Importance
1. How much does this feature reduce node impurity?

node-impoj = wjCj − (wleftj
Cleftj

+ wright
j
Cright

j)
⏟

weighted parent node impurity

weighted child node impurity
⏟importance of node j

fij =
∑j∈Si

node-impoj

∑k∈Sall
node-impok

 where is set of all nodes that split on featureSi i

feature importance (fi):

23

Variable Importance Measure: Permutations
2. How much does reshuffling of a variable reduce model performance?

cats ho
1 1
0 0
1 1
0 0
0 0
1 0
0 0
1 1
1 1
1 1

The larger the discrepancy between baseline model predictions and
reshuffled model predictions, the more important is that feature

24

Regression Trees
when what we wish to predict is continuous instead of categorical

CAN FLY?

YES NO

BIRD NOT BIRD

25

Regression Trees
when what we wish to predict is continuous instead of categorical

for every data point that ends up in a leaf, we predict its value is
the mean of all values that ended up in that node when training

CAN FLY?

YES NO

WEIGHT WEIGHT

26

Regression Trees

10
20
30
40
50
60
70
80
90

100

10 20 30 40 50
X

Y

RSS

 thresholdX

27

Regression Trees

RSS

10
20
30
40
50
60
70
80
90

100

10 20 30 40 50
X

Y
X < 3

Y = 0 Y ≈ 30

 thresholdX

28

Regression Trees

RSS

10
20
30
40
50
60
70
80
90

100

10 20 30 40 50
X

Y
X < 7

Y = 0 Y ≈ 36

 thresholdX

29

Regression Trees

RSS

10
20
30
40
50
60
70
80
90

100

10 20 30 40 50
X

Y

 thresholdX

and so forth…

30

Regression Trees

RSS

10
20
30
40
50
60
70
80
90

100

10 20 30 40 50
X

Y

 thresholdX

X < 15

31

Regression Trees

10
20
30
40
50
60
70
80
90

100

10 20 30 40 50
X

Y
X < 15

now continue with next branch

32

Regression Trees

40 50
X

10
20
30
40
50
60
70
80
90

100

10 20 30

Y
X < 15

X < 10

RSS

 thresholdX

Y = 0 Y = 13
leaf

33

Regression Trees

40 50
X

10
20
30
40
50
60
70
80
90

100

10 20 30

Y
X < 15

X < 10

RSS

 thresholdX

Y = 0 Y = 13
leafthis is not optimal

34

Regression Trees

40 50

10
20
30
40
50
60
70
80
90

100

10 20 30

Y
X < 15

set minimum number of observations to 7

leaf
Y ≈ 2.5

35

Regression Trees

40 50

10
20
30
40
50
60
70
80
90

100

10 20 30

Y
X < 15

leaf
Y ≈ 2.5

and so forth…

and so forth…

and so forth…

36

Regression Trees

40 50

10
20
30
40
50
60
70
80
90

100

10 20 30

Y X < 15

Y ≈ 2.5 X ≥ 40

Y ≈ 2.0 X ≥ 30

Y = 100Y ≈ 60

37

• For classification, purity of the regions is a good indicator the performance of the
model

• For regression, we want to select a splitting criterion that promotes splits that
improves the predictive accuracy of the model as measured by e.g. the MSE (or
RSS as the previous example)

Regression Trees

1. start with an empty decision tree

2. choose a predictor on which to split and choose a threshold for splitting such
that the weighted average MSE of the new region is as small as possible

3. Recurse on each node until stopping condition is met

‣ maximum depth

‣ minimum number of points in region

instead of purity gain, we instead compute accuracy gain

38

Regression Trees

39

Regression Trees

40 50

10
20
30
40
50
60
70
80
90

100

10 20 30

Y

testing data

40

Motivation for Pruning
validation error

training error

complexity

er
ro

r high bias high variance

Full Tree

Early
Stopping

Simple Tree

PRUNING

41

Cost Complexity Pruning
• we can obtain a simpler tree by ‘pruning’ a complex one

• we select from an array of smaller subtrees of the full model that optimizes a
balance of performance and efficiency

where is a decision subtree

 is the number of leaves in the tree

 penalizes model complexity

C(T) = Error(T) + α |T |
T

|T |
α

1. Fix
2. Find best tree for a given and based on complexity
3. Find the best using CV and error measure

α
α C

42

Regression Trees

40 50

10
20
30
40
50
60
70
80
90

100

10 20 30

Y X < 15

Y ≈ 2.5 X ≥ 40

Y ≈ 2.0 X ≥ 30

Y = 100Y ≈ 60

43

Regression Trees: Pruning

versus versus versus

compare using
C(T) = Error(T) + α |T |

44

Example: Hitters (ISLR2)

Regression Trees: Pruning

|
Years < 4.5

Hits < 117.5
5.11

6.00 6.74

2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Tree Size

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

Training
Cross−Validation
Test

45

Decision Trees

+ Decision trees models are highly interpretable and fast to train

- In order to capture a complex decision boundary we need a large trees:
have high variance and prone to overfitting
often underperform compared to other classification/regression methods

46

Random Forests

Ensemble method comprising:
• Bagging
• Random Feature Selection

47

Bagging (Bootstrap Aggregating)
• Bootstrap:

generate multiple samples of training data via bootstrapping
train a full decision tree on each sample of data

• Aggregate:
given an input, we output the averaged outputs of all the models for that input

• Works with the rows of the data

1
2
3
4
5
6
7
8
9
10
11
12

data bootstrapped sample

random sampling
with replacement

48

Random Feature Selection
• Just like bagging but

works with the columns of the data
without replacement

• Every tree will have slightly different predictors

data feature selected sample
random sampling

without replacement

49

Random Forest
• Benefits

+ By using full trees, each model is able to approximate complex function and
decision boundaries

+ By averaging the predictions of all models reduces the variance in the final
prediction (given sufficiently large number of trees)

• Drawback
- the averaged model is no longer easily interpretable - we can no longer trace

the ‘logic’ of an output through a series of decisions based on predictor values

50

• Random forest models have multiple hyper-parameters to tune
the number of predictors to randomly select at each split
the total number of trees in the ensemble
the minimum leaf node size

• Generally tuned through cross validation (data and problem dependent)
• Use out-of-bag errors to evaluate model’s predictive accuracy

cease training once the out-of-bag error stabilizes
if sample large enough, estimate is approximately LOO-CV error for bagging

• When the number of predictors is large, but the number of relevant predictors is
small, random forests can perform poorly

• Increasing number of trees in ensemble does not increase risk of overfitting
but the trees in the ensemble may become more correlated, increase the variance.

⟹

Tuning the Random Forest

51

Out-Of-Bag Errors (OOB Errors)

0 1

0 1

0 1

0
1 0

0 1

0

1

10

0 1

data bootstrapped samples decision trees unused data (OOB)

bag 1

bag 2

bag 3

point-wise OOB error over
full training set:

• classification majority
• regression average

→
→

52

Boosting Trees

53

The trees are grown sequentially:
• Each tree is grown using information from previously grown trees
• The boosting approach learns slowly, thus avoiding overfitting

Boosting Trees

+ + + +…

correct errors made by all previous trees

54

The trees are grown sequentially:
• Each tree is grown using information from previously grown trees
• The boosting approach learns slowly, thus avoiding overfitting

Boosting Trees

+ + + +…

correct errors made by all previous trees

correct error
made by

55

The trees are grown sequentially:
• Each tree is grown using information from previously grown trees
• The boosting approach learns slowly, thus avoiding overfitting

Boosting Trees

+ + + +…

correct errors made by all previous trees

correct error
made by

56

The trees are grown sequentially:
• Each tree is grown using information from previously grown trees
• The boosting approach learns slowly, thus avoiding overfitting

Boosting Trees

+ + + +…

correct errors made by all previous trees

correct error
made by

57

Example
age initial guess residual

obs 1 21 22 -1

obs 2 22 22 0

obs 3 23 22 1

obs 4 22 22 0

obs 5 21 22 -1

actual value = predicted + residual

what if we had a tree that could predict the residuals made by the initial model?

 gradient boosting tree!
instead of fitting a bunch of independent trees,
we incrementally improve on our initial guess

⟹

+ + + +…

58

Example
age initial guess residual

obs 1 21 22 -1

obs 2 22 22 0

obs 3 23 22 1

obs 4 22 22 0

obs 5 21 22 -1

actual value = predicted + residual

what if we had a tree that could predict the residuals made by the initial model?

 gradient boosting tree!
instead of fitting a bunch of independent trees,
we incrementally improve on our initial guess

⟹

+ + + +…
0.01 0.01 0.01 0.01

59

Gradient Boosting Trees
Intuitively:

• Gradient boosting is a method for iteratively building a complex model by
adding simple models.

• Each new simple model added to the ensemble compensates for the weaknesses
of the current ensemble:
‣ each simple model we add to our ensemble model , models the errors of
‣ Thus, with each addition of , the residual is reduced

T

T(i) T T
T(i)

60

Gradient Boosting Trees

61

Gradient Boosting Trees

62

Gradient Boosting Trees

63

Gradient Boosting Trees

64

Gradient Boosting Trees

65

Gradient Boosting Trees: The Algorithm
1. Fit a simple model on the training data

Set and compute residuals fort

2. Fit a simple model to the current residuals, i.e. train using

3. Set where is the learning rate (usually 0.01 or 0.001)

4. Compute residuals, set
5. Repeat steps 2-4 until stopping condition is met

T(0) {(x1, y1), …, (xN, yN)}
T ← T(0) {r1, …, rN} T

T(1) {(x1, r1), …, (xN, rN)}
T ← T + λT(1) λ

rn ← rn − λT(i)(xn), n = 1,…, N

66

Gradient Boosting Trees: The Math

+ + + +…
0.01 0.01 0.01 0.01

z0 + 0.01z1 + 0.01z2 + ⋯ + 0.01zn
baseline prediction how do we choose these errors to correct?

⋮

future trees predict error for a regression tree given defined loss function

let be our predictions Fi Fi =
i

∑
t=0

zt
F1 = z0 + z1
F2 = z0 + z1 + z3

Fi = Fi−1 + zi
zi = −

∂Loss(y, Fi)
∂Fi

67

Gradient Boosting Trees: The Math

+ + + +…
0.01 0.01 0.01 0.01

z0 + 0.01z1 + 0.01z2 + ⋯ + 0.01zn
At iteration :

• You already have a model

• You want to add a new tree so that loss decreases

So you update:
To reduce loss, should point in direction of steepest decrease of the loss:

 That’s exactly the negative gradient.

i
Fi−1(x)

zi(x)
Fi(x) = Fi−1(x) + zi(x)
zi(x)

zi(x) = −
∂Loss(y, Fi−1(x))

∂Fi−1(x)

68

Gradient Boosting Trees: The Math

zi = −
∂Loss(y, Fi)

∂Fi
Negative Gradient of Loss w.r.t. Ensemble Prediction

• The Negative Gradient tell us what adjustments we should make to our prediction in
order to decrease our loss

• Example:

• With squared loss, error is the negative gradient, but the negative gradient will work
in other situations!

Fi

Loss(y, ̂y) = (y − ̂y)2 ⟹ −
∂Loss(y, ̂y)

∂ ̂y
⟹ 2(y − ̂y)

69

Choosing a Learning Rate: Convexity
• Under ideal conditions, gradient descent iteratively approximates and converges to

the optimum
• For a constant learning rate
‣ if is too small, it takes too many iterations to reach the optimum

‣ if is too large, algorithm may ‘bounce’ around the optimum and never get close

‣ Better to treat learning rate as a variable, that is let the value depend on gradient
‣ around optimum is small, and far from optimum is larger

λ
λ
λ

λ λ

70

This Week’s Practical

71

